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Abstract

Purpose Vibration-based damage identification methods rely on robust damage indices to detect and localize structural
defects. While natural frequency shifts are often cost-effective and easily obtainable, their sensitivity to minor damage and
dependence on baseline (intact) data remain key challenges. Existing roving-mass-based methods often suffer from mass-
induced modal fluctuations that generate false peaks in frequency-location curves, limiting their reliability for crack local-
ization. This study aims to develop a robust crack location index for beam-like structures that improves crack localization
accuracy when a roving mass with rotary inertia traverses a crack, while relying primarily on measured natural frequencies.
Methods An analytical expression for natural frequency estimation is derived and validated against results from the Dynamic
Stiffness Method, forming the basis for the index formulation. The proposed index integrates measured natural frequencies
with analytically available modal properties of an intact Euler-Bernoulli beam, allowing false peaks to be suppressed without
requiring baseline frequency measurements.

Results Numerical studies demonstrate that the index reliably identifies single and multiple cracks and performs consistently
across different boundary conditions, with the combined use of the 2nd and 3rd modes providing the most stable diagnostic
signatures. Experimental validation confirms the index’s superiority over the change of natural frequency shift; the results
show that the index can pinpoint crack locations with high accuracy without requiring experimental baseline measurements
from the undamaged structure.

Conclusion The proposed index provides a robust and baseline-free approach for crack localization in beam-like structures.
By incorporating intact-beam modal information into post-processing, the method improves damage identifiability.

Keywords Roving mass - Rotary inertia - Crack detection - Beam - Dynamic stiffness method

Introduction

Structural Health Monitoring (SHM) relies on the develop-
ment and application of reliable and robust indices capable
of identifying, quantifying, and, when feasible, predict-
ing damage in structures to avoid severe consequences
[1]. Vibration-based damage identification is a promising
approach in SHM based on the dynamic response character-
istics of structures. When damage occurs, modal parameters
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such as natural frequencies, mode shapes, and modal damp-
ing are altered due to damage-induced changes in physical
properties such as the mass, damping, and, in particular,
stiffness of the structure. The variation of modal parame-
ters due to damage enables the formulation of a structural
inverse problem, in which the objective is to reconstruct
local changes in physical properties, thus revealing the pres-
ence, location, and severity of any damage. Vibration-based
damage identification has gained considerable attention in
research due to several advantages. Firstly, such methods
are generally cost-effective and do not require extensive
instrumentation. For example, it is possible to extract the
dynamic characteristics of large or complex structures using
a limited number of sensors. Secondly, most vibration-based
techniques require equipment that is compact, user-friendly,
and convenient to mount on the target structure. Thirdly,
vibration-based methods do not require prior knowledge of
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the possible damage location, which makes them suitable
for global monitoring.

Damage Indices

A widely adopted strategy for solving the structural inverse
problem involves developing indices that are highly sensi-
tive to structural damage. These indices are often based on
different modal characteristics such as natural frequency,
mode shape, modal curvature, modal strain energy, and
modal flexibility [2]. For example, Khanahmadi et al. [3]
extended 1D mode shape signals to 2D and proposed two
damage indices based on wavelet transform and signal cur-
vature analysis. Damage locations were indicated by the
discontinuities or peaks in the graph of damage indices.
Zhu and Zhang [4] presented a damage index based on the
frequency decay induced by breathing cracks in a concrete
beam. Nick et al. [5] developed damage indices based on
modal flexibility and modal strain energy and the peaks in
the curves of indices showed the damage location. Brethee
et al. [6] introduced damage indices based on the damage-
induced changes in modal curvature of laminated compos-
ite plates. The locations of fibre breakage and delamination
were indicated by the peaks in the curves of the indices.
He et al. [7] took the modal curvature difference before and
after the damage occurred as the damage index to identify
damages in a composite cantilever beam. To tackle noise
and measurement inaccuracies in modal curvature, Namah
and Brethee [8] proposed another damage index based on
the normalized modal curvature of individual modes to
detect single and double cracks of 30% or 40% severity
in beams. The index was tested on Euler-Bernoulli beams
with standard boundary conditions, for which the intact
modal characteristics can be computed analytically. This
eliminates the need for experimental modal testing of the
undamaged beams when constructing the index. In recent
years, Machine Learning and Deep Learning are becoming
increasingly popular and have been utilized to enhance the
performance of various damage indices [9—11]. Other recent
studies have also focused on developing damage indices
using wavelet transforms. For example, to identify dam-
age in columns under axial loads, Khanahmadi et al. [12]
simulated the damage as a decrease of the modulus of elas-
ticity and proposed a damage location index (DLI) based
on the details of the wavelet coefficients obtained from the
wavelet analysis of the mode shapes of the damaged col-
umn. The DLI was demonstrated to be largely independent
of the magnitude of the axial load, which indicates the DLI’s
potential even near high-load conditions. Further extending
these concepts to plate-like structures, Khanahmadi et al.
[13] developed an irregularity detection index (IDI) for 3D
sandwich panels based on a validated finite element model
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(with the damage defined as a reduction of the modulus
of elasticity of the concrete layer). Their approach utilizes
2D wavelet analysis of combined primary and secondary
mode shapes to identify damaged regions. The IDI shows
monotonic sensitivity to damage severity, which potentially
allows qualitative severity assessment apart from localiza-
tion. It was also found that damage detection at one location
does not interfere with detection at other locations, which
suggests low ‘cross-talk’ in IDI and clearer interpretation.
To address the specific challenge of interface debonding,
Khanahmadi et al. [14] developed a mode shape sensitivity-
based wavelet feature extraction method for concrete-filled
steel tubes. Debonding was simulated as a uniform reduc-
tion of the concrete modulus of elasticity at the interface
to at least 3 mm depth. They proposed a total normalized
irregularity detection index integrating horizontal, vertical,
and diagonal detail coefficients from 2D discrete wavelet
transform applied to corrected modal signals. Debond-
ing near column ends, a region typically problematic due
to boundary stiffness and mode shape curvature, was also
investigated. In another study, instead of assessing the accu-
mulation of irregularities, Khanahmadi et al. [15] focused
on the direct identification of irregularity peaks in an irreg-
ularity detection index at the sites of debonding based on
modal signal processing using 2D wavelet transform. As the
severity of debonding increases, the corresponding irregu-
larity peak identified by the index also increases.

Among different damage indices, natural frequency shift
is the most straightforward and intuitive index for signal-
ling the presence of damage. Methods using natural fre-
quencies have been extensively investigated as frequency
measurements are often efficient and reliable. However,
such methods also face limitations. One key challenge lies
in the measurability of damage-induced natural frequency
changes, particularly when the damage is minor or when
the measurements are affected by considerable noise. From
this perspective, Sun et al. [16] investigated the feasibility
of natural frequency-based crack detection combining fre-
quency shift measurability and structural integrity, which
indicates that the material’s ductility or brittleness can influ-
ence the measurability substantially.

The Roving Mass Technique

Apart from the detectability of a frequency shift, the absence
of baseline information (i.e. the natural frequencies of the
intact structure) poses another challenge — identifying dam-
age location solely from the altered natural frequencies that
do not contain any spatial information of the damage. To
address this, several researchers have introduced an aux-
iliary mass as a probe to assist damage identification. For
example, by sequentially attaching a mass at different points
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along a beam - an approach commonly referred to as the sta-
tionary roving mass technique - a curve of natural frequency
versus mass location can be obtained. Applying a wavelet
transform to the curve allows for the exposure of crack-
induced local perturbations in the detail coefficients, which
can effectively reveal the crack location [17, 18]. The roving
mass technique has also been extended to other structures
such as rectangular plates [19] and cylindrical shells [20]
where local thickness reductions were introduced as dam-
age and the accelerometer served as the auxiliary mass. In
[19], by positioning the accelerometer at various points on
the plate and measuring the fundamental natural frequency,
a frequency shift surface was established. Local changes
in the curvature of this surface revealed the damage loca-
tion. In [20], the accelerometer roved around the cylindrical
shell’s circumference and a frequency shift curve (similar
to the curve of frequency versus mass location in beams)
was obtained, with the lowest point on the curve indicating
damage location.

The natural frequency shift caused by a roving mass
passing over a crack has been confirmed with high-preci-
sion frequency measurement systems such as quasi-optical
coherence vibration tomography in [21], however, the depth
of the introduced saw cut reached half of the thickness of
the tested beam, indicating a relatively severe crack. Wang
et al. [22] constructed a spatial curve named the frequency
shift path by roving an accelerometer (serving as an aux-
iliary mass) along a beam. The main characteristic of the
spatial curve is that its projection onto the time-frequency
plane is the conventional curve of natural frequency versus
mass location, and its projection onto the time-amplitude
plane approximates the power mode shape [23]. Thus the
spatial curve contains information of both frequency shift
and amplitude variation induced by the mass traversing a
damaged region. The curvature of the spatial curve was
taken as the damage index, and damage corresponding to
25% or 50% of beam thickness reduction was located. To
improve the accuracy of crack detection, Solis et al. [24]
introduced a methodology that integrates the roving mass
technique with baseline data. As the mass was sequentially
repositioned along the beam, experimental modal analysis
was conducted at each position. The difference between the
damaged and undamaged mode shapes was then analysed
using wavelet transform. To enhance damage sensitivity,
wavelet coefficients across all mass positions were summed
based on weighting parameters derived from the natural fre-
quency shifts between damaged and intact states, as well
as the estimated noise levels for each mode. This weight-
ing emphasized contributions from mode shapes that were
both strongly affected by damage and exhibited low noise.
In experimental validation, damage levels corresponding to
10%, 20%, and 50% thickness reductions were detected.

However, the identification of the 10% damage case proved
less reliable due to increased sensor-induced noise, which
tended to obscure the damage signature.

Beyond its application to common beams and plates, the
stationary roving mass technique has also been employed
for crack detection in other structural models such as a com-
pressed natural gas cylinder [25], a railway track model
[26], a layered beam model [18], a double-beam system
[27], and a roving disc [28]. In the aforementioned stud-
ies, the influence of the roving mass was typically limited
to its translational inertia during vibration, while the effect
of rotary inertia was neglected. To address this limitation,
Cannizzaro et al. [29] introduced the concept of a roving
body with rotary inertia and theoretically demonstrated that
when the body passes over a crack on a beam, the natural
frequencies of the beam shift abruptly. The underlying ratio-
nale is that the crack brings about a rotation discontinuity
of the beam cross-section, which leads to a discontinuity in
the inertial moment caused by roving mass, thus noticeable
frequency changes can be observed when the mass passes
the discontinuity, i.e. the cracked cross-section. Since the
inertial moment is proportional to frequency squared, the
frequency change becomes more discernible as the mode
number increases [30]. Subsequently, Ilanko et al. [31] pre-
sented a numerical study based on the Rayleigh-Ritz method
where natural frequencies were calculated when a roving
body with rotary inertia traverses a partial crack on a plate,
and similar abrupt frequency shifts were also observed.
Utilizing the frequency shifts in [29, 31], it is possible to
identify damage solely from the measured natural frequen-
cies without baseline information or prior knowledge of the
structure. However, the practical measurability of such fre-
quency shifts with respect to crack severity should be inves-
tigated. In particular, the fact that the rotary inertia, instead
of acting at a point as it does in theoretical derivations, is
distributed over a small contact area would potentially make
the frequency shift less discernible in practice.

Recent Work

To address the above concerns, a recent paper presented
theoretical and experimental investigations to verify the
presence and detectability of the natural frequency shift
when a roving body with rotary inertia passes over a crack
[32]. A systematic comparison between experimental, theo-
retical, and simulation results was made in [32], which shed
light on the feasibility of measuring theoretically significant
frequency shift using impact hammer tests. Two cracked
beams, with crack depths of 20% and 40% of the beam
thickness, respectively, were tested. The natural frequency
f when the mass was located at various positions along
the beam was measured, from which the frequency shift
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between adjacent mass locations (i.e. A f) and the change
in the frequency shift between adjacent mass locations (i.e.
A (A f)) were calculated. The results demonstrated that
a pronounced frequency shift can be reliably captured as
the roving mass traverses the 40% crack. Although the fre-
quency shift associated with the 20% crack was also mea-
surable, identifying the crack location based solely on the
peaks in A f or A (A f) curves proved insufficient for
accurate crack localization. To pinpoint the crack location,
a more robust crack location index than A f and A (A f)
is needed.

While roving mass techniques are well-established, they
can suffer from false alarms in damage indices caused by
mass-induced modal fluctuations, as seen in [32]. Further-
more, the influence of the mass’s rotary inertia is often
neglected. This study aims to address this gap by developing
an effective crack location index that specifically accounts
for rotary inertia and integrates measured frequency shifts
with analytical modal information of the intact beam to
attenuate mass-induced false alarms and isolate the true
crack-induced signature. The method is considered ‘base-
line-free’ as it does not require frequency measurements
from the intact state of the damaged structure. Instead, it
utilizes the theoretical modal properties of a generic intact
beam, which are readily available [33].

The remainder of the paper is structured as follows. In
Sect. 2, an analytical expression for estimating the natu-
ral frequency of an Euler-Bernoulli beam carrying a rov-
ing mass with rotary inertia is derived and verified against
results obtained from the Dynamic Stiffness Method (DSM)
[30, 34, 35]. Based on this formulation, the crack location
index is developed. Section 3 evaluates the robustness of
the crack location index through numerical studies based
on the DSM model, incorporating different crack locations,
various boundary conditions, and multi-crack identifica-
tion. Section 4 provides an overview of the experimental
set-up, introduces the process of natural frequency extrac-
tion from the measured signal, and discusses results for the

Fig. 1 A beam carrying a roving
mass with rotary inertia

20% cracked beam. The applicability of the proposed index
is experimentally verified using the 20% and 40% cracked
beams. Finally, Sect. 5 concludes the study by summariz-
ing the main findings, discussing limitations, and outlining
directions for future work.

Crack Location Index

This section describes the development of a crack location
index. An analytical expression for estimating the natural
frequency of an Euler—Bernoulli beam carrying a mass with
rotary inertia is derived and verified against results obtained
from the DSM. Based on this formulation, the crack loca-
tion index is defined.

The Equation for Natural Frequency Estimation

Figure 1 shows a uniform Euler-Bernoulli beam carrying a
roving mass with rotary inertia where M and .J denote the
translational inertia and rotary inertia of the roving mass,
respectively, and x¢ is the coordinate of the mass location.
The mathematical model developed in this paper is based
on Euler-Bernoulli beam theory. This assumption is justified
by the high slenderness ratio of the beam investigated in
this work (as detailed in Sect. 3). For such a slender beam,
the effects of shear deformation and the rotary inertia of the
beam cross-section are negligible for the lower vibration
modes considered [36, 37]. It should be noted, however,
that while the beam’s rotary inertia is neglected, the rotary
inertia of the roving mass, J, is explicitly included in the
formulation, as it is a localized effect that significantly influ-
ences the frequency shifts as the mass traverses the crack.

Consider the free-body diagram of an element of the
beam of length dx as shown in Fig. 2, where Mjy(x,t) is
the bending moment, F'(z,t) is the shear force, and v(z,t)
is the transverse deflection of the beam. The force equilib-
rium gives

N
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Fig. 2 The free-body diagram
of a beam element in transverse M b + dM b
vibration
M,
F .
F+ dF
v(x, t)
- Y- >
X

—F + (F +dF) =midz + My (1) 6 (x — o) do (I)  The mass is rigidly attached to the beam, thus

where m is mass per unit length, g/ (¢) is the
transverse displacement of the mass, ¢ (z —x¢) is the

Dirac delta function, and the overdot represents the deriva-
tive with respect to time. The moment equilibrium equation
about point P leads to

—My + (My + dMy) + (F + dF)dz = JG (t) 6 (z — x0) dz 2)

where 6 (t) is the rotation of the mass. Writing
dF = %—idx and dM, = %dm and disregarding terms
involving second powers of dx, Egs. (1) and (2) can be
written as

%—i:ﬁw—&—M(jM(t)é(x—xo) 3)
F=-2M 4 76 (t)5 (x — o) (4)

Substituting Eq. (4) into Eq. (3) gives

—OMy 4 g ()8 (z — wo) = i + M (£) 6 (z — 20) 5)

9 x?

where the prime represents the derivative with
respect to . For a uniform Euler-Bernoulli beam, the rela-
tionship between bending moment and deflection can be
expressed as [37]

My (z,t) = BEI22 e (6)

where ET is flexural rigidity. Inserting Eq. (6) into Eq. (5),
the governing equation of motion of the beam becomes:

mii (w,t) + BV (,t) = J0 ()6 (= w0) — Mijas (£) 6 (x — o) (N

qm (1) = v (zo,t) ®)
0 (t) =0 (x0,t) )

Using the modal superposition method [38—40], the beam
deflection can be expressed as

v (@, t) =32, én (x) gn (1) (10)

where ¢, (z) is the nth mode shape of the beam
without the attached mass, found by solving the equation
[41]

11

and ¢y, (t) is the generalized coordinate or modal partici-
pation coefficient. In Eq. (11), w4, is the nth natural fre-
quency of the bare beam (i.e. the beam without the mass).
Substituting Egs. (8)-(10) into Eq. (7) and multiplying by
¢ ,, (z) on both sides and integrating over the whole beam

50 (@) 16 (@) dn (O da+ [ YEIG,, @)% b (@) g (1) dz =
J56m @) [T5 060 @0 ()] 6 (0 = w0) do— (12)
[ 56 m @ MY 06, (@0)dn (D)8 (@~ w0) do

Considering the orthogonal property of mode shapes [37]

0 (m # n)

[ron@on@a={ ) @EM

the first term on the left-hand side of Eq. (12) can be simpli-
fied as

@ Springer
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JEmé (@) wd (@) o (8 dz = mp i (1) (14)

Considering Eq. (11) and Eq. (13), the second term on the
left-hand side of Eq. (12) can be written as

1

JoEBI (@)Y wty, (@) g () dz =mw 3, am (1) (15)

Using Eq. (13) and the sifting property of § function, the
right-hand side of Eq. (12) can be expressed as

f% Gm () [T X2, &' n (x0) Gn (8)] 0 (2 — 20) da—
0 d)m (:E) [M Zn On (xo) Gn (t)] 4 (x - xo) dx = (16)
—J&'% (20) G (t) — M2, (2,) Gm (t) — Ry — Ry
where
Ry =J¢ ., (20) Y i mé; (w0) i (t) (17)
Ry =M¢,, ()Y izm®; (x0)di (t) (18)

Therefore, rearranging and rewriting Eq. (12) gives

[0+ M2, (w0) + 761, (@0) | i (8) +

_ (19)
muw fmw mdm (t) =—Ri— Ry

By neglecting the cross-modal terms i.e. R; and Rs on the
right-hand side of Eq. (19), the mth natural frequency of the
beam carrying a mass at x( can be approximated as
w2 (SE ) — W o

m A0S T M2 o) +I6 7,7 (o) (20)

myp o,

From Eq. (20), w ,, is dependent on the natural frequency
of the bare beam and the modal data of the bare beam at the
mass location. It can be seen how M and .J come into play.
The presence of M and J reduces w ,,,. M is involved by
multiplying the mode shape squared at the mass location,
while the dependence of .J involves the modal slope at the
mass location. This explains the fluctuation of the curve of

Fig. 3 The geometry of the
simply supported beam carrying
a mass with rotary inertia

@ Springer

natural frequency versus mass location in Sect. 4.3. Equa-
tion (20) also reflects why natural frequency shifts occur
when a roving mass with rotary inertia passes over a crack.
A crack brings about a discontinuity in ¢ |, (x), which leads
®. There-

fore, incorporating rotary inertia amplifies the frequency
shift when the mass passes the crack.

to a discontinuity in w ,, through the term J¢ |,

The expression for the change in natural frequency can
be found by taking the first derivative of w ,, with respect
to mass location, i.e.

—wom\/ MY, [Mé , (2)0 ), (2)+ TS 1 (2)0 ! ()
|:'mq/; mtMe2 (x)+Jp ;Z(z)]

From Eq. (21), apart from the mode shape and modal slope,

dw m(x)

%) s also related to ¢, (), i.e. the modal curvature

m () &5 (2),
(x) are not independent of each other, it is impos-
dw m (x)

of the bare beam at the mass location. As ¢

and ¢!/
sible to deduce the extrema of w ,, and directly

from the extrema of ¢, (x), ¢, (z), or ¢;,; (v). How-
ever, the involvement of modal data in the expressions of

dw m(m)

w o and provides some insights for devising the

crack locatlon 1ndex in Sect. 2.3.

Numerical Verification

While an exact expression for the natural frequency of a
beam carrying a mass is not available, to verify the accu-
racy of Eq. (20), the natural frequency of a simply supported
steel beam carrying a mass with rotary inertia is calculated
using the DSM. The dimensions of the beam and the mass
location are shown in Fig. 3. For the material properties, the
density p is 7850 kg/m?, the elastic modulus FE is 200GPa,
and the Poisson’s ratio v is 0.3.

The rotary inertia of the beam Jyq,, is calculated about
the central axis O’ as shown in Fig. 3. 7 and ¢ are dimen-
sionless parameters defined as the ratios between the mass
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and beam for quantifying the translational inertia and rotary
inertia of the mass, and are expressed as

M

T = Myeam (22)
J

L (23)

For a simply supported beam without a mass, the formulas
for the natural frequencies and mode shapes can be found in
[33]. When 7 = 0.1 and ¢ = 0.001, the natural frequen-
cies are listed in Table 1.

Table 1 shows that Eq. (20) gives a very good estimate of
the natural frequency of a beam carrying a mass with rotary
inertia. For the same beam carrying the same mass but with
various boundary conditions (such as clamped-clamped,
clamped-pinned, clamped-free, sliding-pinned, etc.), a com-
parison of the results against the DSM results is listed in
the Appendix A. Overall, Eq. (20) demonstrates satisfactory
accuracy in natural frequency estimation.

Crack Location Index

By sequentially attaching a mass with rotary inertia to dif-
ferent positions along a beam, natural frequencies can be
measured with respect to the mass location. The resulting
frequency shifts occurring as the mass traverses a crack
can be used to identify the crack location. Here it should
be noted how the natural frequency shift (i.e. A f) and the
change of natural frequency shift (i.e. A (A f)) are calcu-
lated. When f; represents the natural frequency evaluated
when the mass is at the ith position (=1, 2, 3, ...), the natu-
ral frequency shift after the mass is moved from the (i — 1)
th to the +th position can be expressed as

Afi:fi_fi—l (Z:2a3a47) (24)

Table 1 Natural frequencies obtained through the DSM and Eq. (20)

Mode number DSM results Equation (20) Percentage
(rad/s) results (rad/s) error (%)
1 194.75 194.92 0.09
2 744.64 745.00 0.05
3 1661.60 1641.00 1.24
4 3031.07 2979.74 1.69
5 4843.61 4870.20 0.55
6 6957.92 7182.00 322
7 9281.31 9540.22 2.79
8 12049.70 11914.86 1.12
9 15263.28 14769.00 3.24
10 18076.71 18612.19 2.96

Repeating this procedure for the natural frequencies eval-
uated at all mass locations, the resulting curves of A f
are obtained. The change of natural frequency shift (i.e.
A (A f)) is also calculated as an attempt to highlight the
crack location. A (A f) is defined as follows
AAf)=Afi—Afiii (i=3,4,5,...) (25)
Therefore, A (A f) is the difference between the A f
when the mass is located in two adjacent positions.

Itis shown in [32] that false peaks in the curve of A (A f)
versus mass location make it challenging to determine the
crack location. To suppress those peaks in A (A f), a crack
location index ( is introduced. When the coordinate of the
mass location is x, the crack location index for the mth
mode at zo, i.e. ¢, (zo), is defined as

Com (@0) = A (A fm) lag ® &1 (z0) @ 67, (x0) (26

For an intact beam carrying a mass at xg, it is shown in
Eq. (20) that w ., (or fy,) is directly related to ¢, (xo)

and ¢/, (x¢). It is also shown in Eq. (21) that %jz) (or
A f,) depends on ¢, (v), ¢, (x), and ¢’ (z). This

observation motivates the formulation of the crack loca-
tion index ¢ which employs the zero points of ¢/, (x) and
¢'!" () to attenuate the extrema of A (A f), thereby sup-
pressing false peaks and isolating the peak corresponding to
the crack location. The rationale behind the formulation of

¢ is demonstrated as follows.

Equation (21) can be rewritten as

dw;;(x) — _ QO (l’) G;F (SE) (27)

where

Ko =wpm\/mi,, (28)
Qui (2) = Mo, (2) b () + T () by () (29)

G () =m i ,, + M@ 2, (2) + J$ "% (2) (30)

Thus the 2nd and 3rd derivatives of w ,, (z) can be written
as

L) = K [-Qr, (2) G (2) + 3Qm (2) Gi? ()G (@)]  (31)

and

K, 0 ()G )30, ()G () 7) = 2 Qun (1)G1, (1) 3O (1) Gom ()G () (32)
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V@) 46, @6 @]+ (007 @)+ ol @6 ()] (33)

om @l 3y

G (@) =2[M¢ ., () b1 (2) + TG 1, (2) 61 ()] (35)

Gip (2) = 2M [0, (@) + 6, (1) 6 1 (@)]

(36)

+27 (6117 (@) + 61, (@) 010" ()]
Suppose  that at a given mass  location

xo, ¢, (10) = ¢ (x0) = 0, which is possible when the

mode shape ¢ ,, (x) can be expressed using trigonometric

functions (e.g. beams with pinned-pinned, sliding-pinned,

and sliding-sliding boundary conditions [33]). It leads

to Qm (z0) = Q) (o) = Gl (x0) =0, and hence the

numerator of Eq. (32) becomes zero and % =0,
To

reaches a local extreme at xg. As

. d? .
which means %(l)

2
the extrema of %”;(I) are equivalent to the peaks in

A (A fin), multiplying A (A fi) [ay by ¢4, (z0) and
¢!!" (xo) suppresses the peak when the mass coordinate is
xo. Thus Eq. (26) can be formulated.

Although the formulation of ¢ can be analytically justi-
fied for beams whose mode shapes ¢ ,,, () can be expressed
in trigonometric functions, its effectiveness may extend
beyond these specific cases. This is shown in Sect. 3 with
beams whose mode shapes are represented by combina-
tions of trigonometric and hyperbolic functions (e.g. beams
with clamped-clamped, clamped-pinned, and clamped-free
boundary conditions [33]).

Numerical Results

To verify the effectiveness of the proposed crack location
index, a series of numerical examples based on the DSM
are presented in this section. The crack locations or beam
boundary conditions are varied across the examples to eval-
uate whether the crack location index performs well under
different circumstances.

Clamped-Clamped Cracked Beam

A clamped-clamped steel beam with a 20% thickness reduc-
tion crack and carrying a roving mass with rotary inertia
is modelled using the DSM. The beam has dimensions of
0.623m x 0.020m x 0.002 m (length x width x thick-
ness). The crack is located at 0.394 m from the left end of
the beam. The spacing between adjacent mass locations is
0.004 m. The material properties of the beam and the size of
the mass are listed in Table 2.

The curves of f, A (A f), and ¢ versus mass location
are shown in Fig. 4(b). The modal data of the 8th mode of
the clamped-clamped intact bare beam is shown in Fig. 4(a)
for comparison. It can be observed that some of the local
maximums of the curve of f align with the extrema of the
mode shape and modal curvature of the intact bare beam.
The extrema of the curve of f correspond to the peaks in the
curve of A (A f). Therefore, multiplying A (A f) by the
derivative of mode shape (i.e. ¢, (x)) and the derivative
of modal curvature (i.e. ¢/’ (x)) would help suppress the
peaks in the curve of A (A f). As shown in the curve of (,
there are fewer peaks compared with the curve of A (A f).

Although some peaks are suppressed, the remaining
peaks in the curve of ¢ for the 8th mode still impede the
determination of crack location. However, as the mode
number decreases, the number of remaining peaks in the
curve of ¢ reduces. The results of the 7th mode to the 1st
mode are shown in Figs. 5, 6, 7, 8, 9, 10 and 11. Observ-
ing these figures, the crack location (at 0.394 m) becomes
increasingly visible in the curve of ( as the mode num-
ber decreases. The crack location can be clearly seen in
the curves of ( for the first three modes because there are
no false peaks except near the boundaries. The curve of f
reaches extrema when the mass is located near the boundar-
ies possibly due to the large contribution of ¢/, (z), and
the resulting peaks in the curve of A (A f) cannot be sup-
pressed using the current crack location index. Therefore,
the crack location index is most effective for the first three
modes excluding regions near boundaries. Considering that
A (A f) for the 1 st mode does not give meaningful results
in the experiment due to the small magnitude of the peak
at the crack location, the 2nd and 3rd modes are used for
locating the crack. It should be noted that the selection of
the 2nd and 3rd modes represents an optimal balance for the
application of ¢ . Lower modes (e.g. mode 1) possess low
modal curvature, resulting in reduced sensitivity to small
cracks. Conversely, higher modes (e.g. mode 8) exhibit

Table 2 Parameters of the beam
and roving mass E

Density p Young’s modulus Shear modulus Poisson’s ~ Dimension-  Dimensionless
G ratio v less mass 7 rotary inertia ¢
7571.43 kg/m® 188.58GPa 75GPa 0.303 1.15 0.17
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Fig. 4 The information extracted from the 8th mode. (a) the modal data for the 8th mode of the intact bare beam, (b) the natural frequency data
and { for the 8th mode of the cracked beam carrying a roving mass (20% crack at 0.394 m)
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Fig.6 The natural frequency data and ¢ for the 6th mode (20% crack at 0.394 m)

shorter wavelengths and intensified fluctuations in the fre-
quency curve. These fluctuations generate multiple false
peaks in A (A f), and although ¢ analytically suppresses
some of them (as shown in Sect. 2.3), not all false peaks can
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be removed. As the mode number drops, the modal fluc-
tuations reduce, and fewer false peaks remain unsuppressed
after applying ¢ . An optimal balance can be reached in the
2nd and 3rd modes where all false peaks except those near
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Fig. 8 The natural frequency data and ¢ for the 4th mode (20% crack at 0.394 m)

boundaries can be suppressed by (, allowing the crack-
induced signature to be highlighted.

By only including the results from 0.1 m to 0.5 m, i.e.
by excluding the regions near boundaries, the resulting

curves of ¢ for the first three modes are shown in Fig. 12.
These near-boundary regions are excluded because the cur-
rent index formulation is less reliable near the supports due
to strong boundary condition effects, a limitation that is
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Fig. 9 The natural frequency data and ¢ for the 3rd mode (20% crack at 0.394 m)
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Fig. 11 The natural frequency data and ¢ for the 1st mode (20% crack at 0.394 m)

T

| | | | |

0.25 0.3 0.35 0.4 0.45 0.5
Mass location [m]

Fig. 12 The curves of ¢ ;, ¢ 5, and ¢ 5 excluding regions near boundaries (20% crack at 0.394 m)
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discussed further in the conclusion. From Fig. 12, the loca-
tion of the 20% crack can be pinpointed from the curves of
the crack location index ¢ . The average of the x-coordinate
of the two prominent peaks (indicated by the red dashed
lines in Fig. 12) is taken as the identified crack location,
which matches the actual crack location (i.e. 0.394 m).

The Effect of Rotary Inertia and Mass

Based on the DSM model in Sect. 3.1, the effect of the rov-
ing rotary inertia on the crack location index for the first
6 modes is shown in Fig. 13. The dimensionless mass 7
is maintained as 1.15 and the dimensionless rotary inertia
@ varies from 0.03 to 0.17. From Fig. 13, the crack can
be clearly identified by the average of the x-coordinate of
the two prominent peaks in the first 3 modes. Increasing the
rotary inertia helps amplify the peak at the crack location
for the first 3 modes. As the mode number increases, addi-
tional false peaks remain after applying ( as previously
mentioned, and the curves start to overlap, which means
the effect of varying rotary inertia diminishes for higher
modes. This agrees with the observation in [30]. Overall,
a large rotary inertia would be favourable because the pro-
posed crack location index focuses on lower modes (the 2nd
and 3rd modes, specifically) where the effect of varying the
rotary inertia is more significant.

Figure 14 illustrates the effect of the roving mass on the
crack location index for the first 6 modes. The dimension-
less rotary inertia ¢ is fixed at 0.17 and the dimensionless
mass 7 varies from 0.38 to 1.15. Compared with varying
the rotary inertia, the effect of different mass on the peak
at the crack location is less pronounced. For lower modes,
a larger mass helps suppress the undulations of ( curves,
thereby highlighting the peak at the crack location. As the
mode number increases, more residual false peaks persist
after applying ¢, and the influence of varying the mass
becomes progressively weaker. Overall, the effect of mass
on ¢ does not follow a monotonic pattern, thus some trial
calculations were conducted when determining the mass in
the experiment.

Alternate Crack Locations

This section explores scenarios where the crack is posi-
tioned close to the antinodes of the 2nd and 3rd mode shapes
of the intact bare beam. In these cases, as the mass passes
over the crack, ¢/, (zo) (i.e. the slope of the mode shape
at the crack location) is close to zero. Consequently, the
derived index ¢ ,, (xg) also approaches zero as indicated
by Eq. (26), limiting its ability to indicate the crack location.
To address this, both the 2nd and 3rd modes are utilized
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for crack localization. The rationale is that if the crack lies
near an antinode of the 2nd mode, ¢ 5 () approaches zero
when the mass passes over the crack but ¢ 5 (o) may still
successfully indicates the crack location, and vice versa.
The following numerical examples, based on the DSM
model in Sect. 3.1, are designed to evaluate this concept by
modifying the crack location accordingly.

In the first scenario, the crack is located at 0.442 m where
¢ 5 (z0) is close to zero. The resulting curves of ¢ for the
first three modes after excluding the regions near boundar-
ies are shown in Fig. 15. From Fig. 15, ¢ 5 does not give
meaningful results because the peak caused by the mass
passing over the crack is also suppressed. In contrast, the
peak in the curve of ( 5 is unaffected and clearly indicates
the crack location. The average of the x-coordinate of the
two prominent peaks pinpoints the actual crack location (i.e.
0.442 m).

In the second scenario, the crack is located at 0.486 m
and thus ¢ 5 (zo) approaches zero when the mass passes
the crack. Figure 16 shows the curves of ( for the first three
modes after excluding the regions near boundaries. As illus-
trated, the curve of ( 5 does exhibit a distinct peak apart
from a minor increase near the beam’s midpoint. This small
peak is a remnant from the suppression of a more signifi-
cant peak previously observed in Fig. 9(b). Nevertheless,
the crack location remains identifiable through the peak in
the curve of ¢ ,. The crack location is indicated by the aver-
age of the x-coordinate of the two prominent peaks in the
¢ o curve.

Overall, the combined use of (5, and ( 5 enhances the
reliability of crack localization as the crack-induced peak
consistently appears in at lease one of the { curves. Even
when the peak is attenuated in one mode due to the proxim-
ity of a mode shape extremum, it remains distinguishable
in the other.

Alternate Boundary Conditions

In this section, the crack location index is evaluated for dif-
ferent boundary conditions. The numerical analysis uses
the DSM model in Sect. 3.1, but with altered support con-
figurations. Figure 17 shows the resulting curves of ( ;,
¢ 9, and (¢ 3 when the cracked beam is simply supported,
clamped-pinned, and clamped-free, respectively. The crack
is positioned at 0.394 m as in Sect. 3.1 and results near the
boundaries are excluded. Although the boundary conditions
vary, distinct peaks consistently emerge in the curves of ( ,
and ( 5 as the mass passes over the crack and the crack
location can be clearly identified (as indicated by the red
dashed lines in Fig. 17), confirming the robustness of the
proposed crack location index.
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Fig. 16 The curves of ¢ ;, {5, and ( 5 excluding regions near boundaries (20% crack at 0.486 m)

Multi-Crack Scenario crack location index is applicable to multi-crack identifica-

tion. In this section, the numerical analysis uses the DSM
It has been demonstrated in [29] that when a roving mass  model in Sect. 3.1 with modified crack configurations.
with rotary inertia passes over multiple cracks on a beam,  Three cases are investigated, each featuring three randomly
frequency shifts can be observed at each crack location.  positioned cracks of 20% severity. The resulting curves of
Therefore, it is also worth examining whether the proposed
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Fig. 17 The curves of ¢ 4, ¢ 5,
and ( 5 for different boundary
conditions (20% crack at

0.394 m). (a) simply-supported
beam, (b) clamped-pinned beam,
(¢) clamped-free beam
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¢ for the first three modes after excluding the regions near
boundaries are shown in Fig. 18.

Figure 18 shows that cracks can be clearly identified by
the peaks in ¢ 5 and ( 5. Although the magnitude of peaks
may vary among different modes, and some crack-induced
peaks may be suppressed when the crack lies near an anti-
node (as discussed in Sect. 3.3), the combined use of ¢ 5 and
¢ 5 ensures that there is at least one distinguishable peak at
each crack location, preventing missed identifications.

It should be noted that the present index is developed for
open cracks and a single roving mass; scenarios involving
asymmetric damage or more complex mass distributions
introduce additional dynamic interactions and are therefore
identified as directions for future work.

Experimental Validation

This section outlines the experimental set-up for investigat-
ing the existence and measurability of the natural frequency
shift when a roving mass with rotary inertia is shifted across
a crack. Experimental results from the 20% cracked beam
carrying a roving mass with the maximum rotary inertia set-
ting are presented here. Results from both the 20% and 40%
cracked beams are used to verify the crack location index.

Experiment Layout

The experimental set-up is shown in Fig. 19. A heavy steel
platform with two supports was designed to carry a beam.
The beam made of mild steel was clamped to the support
at both ends. A crack was introduced by machining a flat-
bottomed notch 2 mm wide on the beam. Two crack depths
were used, corresponding to 20% and 40% thickness reduc-
tion of the beam, respectively.

The roving mass was made of steel and was clamped to
the beam with fasteners. The roving mass is 1.15 times the
mass of the beam, equal to one of the dimensionless mass
values in Sect. 3.2. The rotary inertia of the roving mass can
be adjusted by changing the radius of gyration (see Fig. 20).
Impact hammer tests were performed whenever the mass
was located in a new position to measure the frequency
response of the set-up. The spacing for roving mass place-
ment was 4 mm. A total of 71 mass locations within a range
of 280 mm were tested on each cracked beam. The coor-
dinate of the centre of the crack was 394 mm from the left
end. For each cracked beam, three settings of rotary inertia
as shown in Fig. 20 were tested, corresponding to the three
magnitudes of rotary inertia tested in Sect. 3.2.

Natural Frequency Extraction

During the impact hammer tests, the excitation and response
signals were processed by a dynamic signal analyser (model:
Data Physics QUATTRO) which gave the transfer function.
SignalCalc 900 Series software was used to configure the
signal analyser and visualize the signals. The data files con-
taining the transfer function signal were then exported to
MATLAB for natural frequency extraction. Figure 21 shows
a typical plot of the accelerance frequency response func-
tion (FRF) measured on the 20% cracked beam carrying the
roving mass with the maximum rotary inertia setting, when
the distance between the mass location and the left end of
the beam is 0.256 m. The magnitude plot (top) highlights
multiple resonance peaks over the 0-800 Hz frequency
range, while the phase plot shows the expected 180° phase
transitions across each natural frequency. The sharp reso-
nance peaks indicate the light damping of the system.

The process of natural frequency extraction consists
of curve-fitting a theoretical expression for how an FRF
behaves near resonance. This is required because the FRF
is measured at discrete frequency points and the measured
resonance peak does not necessarily align with the true res-
onance frequency (see Fig. 22). The single-degree-of-free-
dom (SDOF) circle-fit method was employed to improve
the accuracy of natural frequency estimation. This method
works adequately for structures whose frequency response
functions exhibit well-separated modes which are lightly
damped [42]. It is based on the fact that, for the general
SDOF systems, a Nyquist plot of the frequency response
properties produce a circle-like curve (an exact circle if
the appropriate parameter is chosen for the type of damp-
ing model), and on the fact that multi-degree-of-freedom
(MDOF) systems produce Nyquist plots of frequency
response data which include sections of near-circular arcs
corresponding to the regions near the natural frequencies
[42]. As an example, the resonance highlighted in the mag-
nitude and phase plots (Fig. 21) corresponds to a natural
frequency near 383 Hz. Due to the discrete frequency reso-
lution of the measured FRF, the peak magnitude does not
necessarily coincide with the true resonance frequency.
To improve accuracy, the complex-valued FRF data in the
vicinity of this peak are plotted in the Nyquist plane (see
Fig. 23), where lightly damped SDOF behaviour produces
a near-circular arc. A least-squares circle fit is then applied,
yielding an accurate estimate of the natural frequency
(383.08 Hz). Together, Figs. 21 and 23 illustrate both the
identification of the resonance from the FRF and the refined
estimation enabled by the circle-fit method.
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Fig. 18 The curves of ¢ 1, ¢ 5,
and (¢ 5 for multi-crack cases
(excluding regions near boundar-
ies, all cracks are 20%). (a) case
1: cracks are located at 0.15 m,

0.33 m, and 0.41 m, (b) case
2: cracks are located at 0.21 m,
0.27 m, and 0.37 m, (c) case 3:
cracks are located at 0.11 m,
0.25m, and 0.43 m
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Fig. 19 The experimental set-up. g -
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Fig. 22 A typical resonance peak (‘x’ indicates discrete data points)

20% Cracked Beam Results

The natural frequency results for the 20% cracked beam
carrying a roving mass with the maximum rotary inertia
setting are shown in Fig. 24. The experimental results are
also compared with those obtained using ANSYS simula-
tions and the analytical DSM model. The results from dif-
ferent methods are in good agreement. The average relative

@ Springer

21 Measured accelerance FRF showing the magnitude (top) and phase (bottom) over the 0-800 Hz frequency range

percentage error between experimental results and ANSYS
results for the first eight natural frequencies is between
2.47% and 8.17%. To confirm the measurability of the fre-
quency changes when the roving mass passed the 20% crack
in the presence of measurement noise and small parameter
variations, a measurability check has been presented in
Appendix B. The natural frequency shift that occurs when
the mass passes the crack at 394 mm is measurable, but it is
not easily distinguishable from the overall natural frequency
curve. In addition, irregular frequency variations elsewhere
in the data may further obscure this effect and make visual
interpretation more challenging. For example, some abnor-
mal frequency shifts appear in the curves of the 4th and 5th
natural frequencies because these two modes are closely
coupled with two modes in other directions (see Fig. 25),
respectively, when the mass is located at certain locations
(approximately 4 mass locations in the 4th natural frequency
and 5 mass locations in the 5th natural frequency).
The comparison of the results of natural frequency shift
A f is made in Fig. 26. For the A f curve, the peak cor-
responding to the crack location is relatively small at lower
frequencies. For example, it is impossible to find a notice-
able peak at the crack location for the 1 st natural frequency.
For the 2nd natural frequency, the peak at the crack loca-
tion is observable, however, the magnitude of the peak is
comparable to that of the peak caused by a measurement
error. False peaks appear in the curves of A f of the 4th
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Fig. 23 Nyquist plot of the
complex-valued accelerance FRF 100+
in the vicinity of the resonance as
highlighted in Fig. 21
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and 5th natural frequencies due to closely coupled modes.
For the 6th to 8th natural frequencies, the curves exhibit
intensified fluctuations, making the crack-induced peak less
discernible.

Although the natural frequencies f for the 2nd and 3rd
modes show good agreement with the ANSYS and DSM
predictions (Fig. 24), the corresponding A f curves exhibit
noticeably stronger oscillations (Fig. 26(b, ¢)). This behav-
iour occurs because A f is obtained by differencing two
natural frequency measurements at adjacent mass locations,
effectively acting as a numerical derivative of the measured
f-curve. Even small experimental variations (e.g. slight dif-
ferences in hammer excitation, bolt-tightening torque varia-
tions when repositioning the mass, or minor errors in mass
placement) are amplified in the differenced quantity, despite
being barely visible in the underlying frequency values.

To reduce the fluctuations, the curves of A (A f) are
shown in Fig. 27. For the A (A f) curve, the overall profile
is flatter and the peak at the crack location appears more
pronounced. However, the presence of false peaks hinders
reliable crack localization. These false peaks are generally
due to measurement error or the small natural frequency
shift around the extrema of the natural frequency curve. For
the 1 st mode, the crack-induced frequency shift is relatively
small and of the same order as the combined measurement
uncertainty. Therefore, neither A f nor A (A f) yields
a reliable crack signature for the 1st mode, as shown in
Fig. 26(a) and Fig. 27(a). As an example, Fig. 28 presents

100 200 300 400
Real part FRF

the results of the 8th natural frequency, where A f changes
in sign near the extrema of the f curve, leading to addi-
tional peaks in the A (A f) curve, which agrees with the
observation in Fig. 4. These additional peaks are compa-
rable in magnitude to the peak associated with the crack,
thereby preventing clear identification of the crack location.

Implementation of the Crack Location Index

To suppress the additional peaks, the crack location index
is applied to the 3rd natural frequency. Figure 29 shows
the curves of f3, A (A f3), and (5 for three different
settings of the rotary inertia. When the rotary inertia is set
to the maximum and medium values, the crack location is
indicated by the most significant change in the curve of
¢ 3. When the rotary inertia is at the minimum setting, a
noticeable variation in ¢ s is still observed near the actual
crack location. The average of the x-coordinate of the two
prominent peaks is taken as the identified crack location,
which is 0.394 m for both the maximum and medium rotary
inertia settings, and 0.386 m for the minimum rotary iner-
tia setting. The maximum distance between the actual crack
location (i.e. 0.394 m) and the identified crack location is
8 mm. Overall, the crack location can be accurately identi-
fied using the proposed index. Furthermore, ¢ 5 exhibits a
smoother profile compared with A (A f3), which is benefi-
cial for determining the crack location.
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{ Fig. 24 The comparison of natural frequency results (20% crack at
394 mm). (a) 1 st natural frequency, (b) 2nd natural frequency, (¢) 3rd
natural frequency, (d) 4th natural frequency, (e) 5th natural frequency,
(f) 6th natural frequency, (g) 7th natural frequency, (h) 8th natural
frequency

To further verify the applicability of the crack location
index, it is also applied to the experimental data from the
40% cracked beam. The resulting curves are presented in
Fig. 30. While the A (A f3) plots already provide sufficient
information to identify the crack location, the curves of ¢ 5
offer a smoother representation. This smoothness enhances
the visibility of the abrupt change in ¢ 5 as the mass passes
over the crack, thereby facilitating clearer crack localiza-
tion. The crack is consistently identified at 0.394 m, which
matches the actual crack location accurately.

Overall, when the crack is relatively severe, the crack
location can be identified from the pronounced peak in the
curve of A f or A (A f) versus mass location. However,
in the presence of a small crack, the occurrence of false
peaks in the curve of A (A f) may impede the determina-
tion of crack location. Under such conditions, the proposed
crack location index ( offers improved performance as it
effectively attenuates some of the false peaks and enhances
the identifiability of the crack location.

Concluding Remarks

In this study, an analytical formulation was developed to
estimate the natural frequencies of an Euler-Bernoulli beam
subjected to a roving mass with rotary inertia. The derived
expression was validated against results obtained from the
Dynamic Stiffness Method (DSM). Leveraging this formu-
lation, a crack location index ¢ (i.e. Equation (26)) was
proposed and analytically justified. A key advantage of the
proposed index is its ability to suppress false peaks in the
curve of A (A f) (i.e. the change of natural frequency shift
when a stationary mass traverses the beam, as defined in
Eq. (25)) for the lower modes, thereby highlighting the true
peak corresponding to the crack location. In addition, ¢ can
be calculated using only the measured natural frequencies of

Fig. 25 Two other modes affect-
ing 4th and 5th natural frequen-
cies. (a) torsional mode shape,
(b) bending mode shape (strong
direction)

(a) torsional mode shape

the cracked beam and standard modal data for intact beams
available in the literature for common boundary conditions.
To assess its robustness, numerical studies were performed
using DSM-based models with variations in rotary inertia
and mass, crack location (including near modal antinodes),
and boundary conditions (simply supported, clamped, and
cantilever). The applicability of ¢ for multi-crack identi-
fication was also investigated. The results demonstrate that
when the 2nd and 3rd modes are used, cracks are consis-
tently identified from the peaks of { curves with high accu-
racy. Experimental verification using single-cracked beams
with 20% and 40% cracks further confirms the reliability
of the index. Compared with the A (A f) curves, the ¢
curves exhibit reduced fluctuations and more clearly high-
light the damage location through a prominent peak.

The main findings of this study can be summarized as
follows:

1. The accuracy of the derived analytical expression for
estimating the natural frequency of an Euler-Bernoulli
beam carrying a mass with rotary inertia is verified
across multiple types of boundary conditions. For the
first ten natural frequencies, the error ranges from 0.05%
to 3.24% for simply supported boundaries, 0.00% to
6.92% for clamped-free boundaries, 0.03% to 6.92%
for clamped-clamped boundaries, 0.01% to 6.87% for
clamped-pinned boundaries, and 0.01% to 8.08% for
sliding-pinned boundaries.

2. The proposed crack location index ( is ‘baseline-free’
because it relies on measured natural frequencies of
the damaged beam and does not require modal tests on
its intact state. Instead, it utilizes the theoretical modal
properties of an equivalent intact beam, which are read-
ily available in the literature [33].

3. The proposed index suppresses false peaks in the curve
of A (A f) and the best performance can be observed
for the 2nd and 3rd modes where all false peaks except
those near boundaries can be suppressed, allowing
crack-induced peaks to be highlighted.

(b) bending mode shape (strong direction)
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{ Fig. 26 The comparison of natural frequency shift ( A f) results (20%
crack at 394 mm). (a) 1 st natural frequency, (b) 2nd natural frequency,
(¢) 3rd natural frequency, (d) 4th natural frequency, (e) 5th natural
frequency, (f) 6th natural frequency, (g) 7th natural frequency, (h) 8th
natural frequency

4.

Since the proposed index performs well with lower
modes, using a larger roving rotary inertia is beneficial,
whereas variations in the roving mass have a relatively
weaker influence on the peak at the crack location.

The proposed index can be applied to different bound-
ary conditions.

The proposed index can be used for detecting multiple
cracks without missing identifications when the 2nd and
3rd modes are used jointly.

Using the proposed index, crack locations were iden-
tified accurately across all numerical studies. In the
experimental validation, the crack location was pin-
pointed for the 40% cracked beam under all three rotary
inertia settings; for the 20% cracked beam, the largest
deviation between the true and identified crack loca-
tions was 8 mm, which is small compared with the
length of the segment (i.e. 280 mm) being tested.

Based on these findings, some recommendations for

future research are given as follows:

1.

A limitation of the proposed index in its current form
is its reduced reliability in regions near the beam’s sup-
ports. This is because, for the boundary conditions con-
sidered, when the roving mass approaches boundaries,
some of the displacement, slope, and curvature of all
the bending modes approach zero, so the effect of the
roving mass diminishes rapidly. This can change natural
frequencies rapidly near supports, leading to false peaks
in A (A f)and ¢ that obscure or mimic the signature

of a crack. Since damage often occurs near supports
in real-world structures, addressing this limitation is a
critical next step. One promising approach is to lever-
age advanced signal processing such as in [14] where
the wavelet feature extraction-based damage detection
index demonstrates satisfactory accuracy when detect-
ing damage in the end regions of concrete-filled steel
tubes.

Numerical results indicate that the proposed index for
the 1 st mode can also support crack identification. The
measurability check in Appendix B also confirms that
the crack-induced frequency shift is measurable for the
I st mode. In the experiment, however, the frequency
shift in the 1 st mode was largely obscured by measure-
ment noise when plotted together with results from
other mass locations. Integrating the index with sig-
nal processing approaches, for example wavelet-based
methods [43], may help improve detection capability
when noise is present.

Future work could investigate how to generalize the
proposed index to beams with more complex boundary
conditions, where the modal characteristics of the cor-
responding intact beam may not be directly accessible.
One possibility is to examine whether the intact beam’s
modal properties could be inferred in an inverse manner
using Eq. (20).

The proposed index has been shown to identify multiple
cracks, but situations involving closely spaced cracks
or distributed damage warrant further investigation. In
such cases, the distinct crack-induced peaks revealed by
the index may merge and become less distinguishable.
Advanced signal processing such as wavelet transform
may help isolate and sharpen these local perturbations.

A useful extension would be to benchmark the pro-
posed index against existing damage indicators, such
as those based on modal curvature [44] or modal strain
energy [45].
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{ Fig. 27 The comparison of the change of natural frequency shift
(A (A f)) results (20% crack at 394 mm). (a) 1st natural frequency,
(b) 2nd natural frequency, (¢) 3rd natural frequency, (d) 4th natural
frequency, (e) 5th natural frequency, (f) 6th natural frequency, (g) 7th
natural frequency, (h) 8th natural frequency

—_ N
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Fig. 28 The comparison of f, A f, and A (A f) for the 8th natural frequency (20% crack at 394 mm. The red dotted lines indicate the mass
locations corresponding to the extrema of the curve of natural frequency)
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Fig. 29 The natural frequency
data and ¢ of the 3rd mode of
the 20% cracked beam carrying

a roving mass with rotary inertia
(crack location: 0.394 m). (a)
maximum rotary inertia setting,
(b) medium rotary inertia setting,
(¢) minimum rotary inertia setting
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Fig.30 The natural frequency
data and ¢ of the 3rd mode of
the 40% cracked beam carrying

a roving mass with rotary inertia
(crack location: 0.394 m). (a)
maximum rotary inertia setting,
(b) medium rotary inertia setting,
(¢) minimum rotary inertia setting
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boundary conditions. The results are compared with the

Appendix A. Verification of the Natural DSM results and presented below,

Frequency Estimation Equation across
Multiple Boundary Conditions

To further validate the accuracy of Eq. (20), natural fre-
quencies are calculated for the beam in Fig. 3 with different

Table 3 Natural frequencies obtained through the DSM and Eq. (20) forclamped-free boundary conditions

—

Mode number DSM results (rad/s) Eq. (20) results (rad/s) Percentage error (%)
1 71.12 71.12 0.00
2 441.01 441.12 0.03
3 1186.72 1190.31 0.30
4 2243.80 2238.48 0.24
5 3732.07 3650.13 2.20
6 5711.78 5553.04 2.78
7 8067.03 8025.97 0.51
8 10612.90 11219.44 5.72
9 13497.17 14431.21 6.92
10 17024.35 18026.19 5.88

Table 4 Natural frequencies obtained through the DSM and Eq. (20) forclamped-clamped boundary conditions

M, J
7 7
—

Mode number DSM results (rad/s) Eq. (20) results (rad/s) Percentage error (%)
1 447.52 447.65 0.03
2 1186.46 1190.01 0.30
3 2243.76 2238.46 0.24
4 3732.08 3650.13 2.20
5 5711.78 5565.94 2.55
6 8067.03 8025.97 0.51
7 10612.90 11219.44 5.72
8 13497.17 14431.21 6.92
9 17024.35 18026.19 5.88
10 20708.91 22020.92 6.34
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Table 5 Natural frequencies obtained through the DSM and Eq. (20) forclamped-pinned boundary conditions

Mode number

DSM results (rad/s) Eq. (20) results (rad/s) Percentage error (%)

O 0 3 O i = W N~

—_
(e}

M,]
1
7 m
—
310.11 310.14
972.57 974.69
1945.14 1947.00
3313.01 3255.44
5174.50 5033.58
7454.56 7353.04
9960.06 10484.98
12720.88 13594.65
16085.15 17089.93
19886.97 20984.79

0.01
0.22
0.10
1.74
2.72
1.36
5.27
6.87
6.25
5.52

Table 6 Natural frequencies obtained through the DSM and Eq. (20) for sliding-pinned boundary conditions

Mode number

DSM results (rad/s) Eq. (20) results (rad/s) Percentage error (%)

O 0 3 N i W N~

—
(e)

M,]
%
s

45.84 45.84
431.19 428.48
1236.20 1240.06
2408.70 2430.48
3845.30 3855.26
5649.54 5542.30
7958.77 7738.50
10614.74 10703.30
13369.67 14332.98
16564.25 17903.13

0.01
0.63
0.31
0.90
0.26
1.90
2.77
0.83
7.21
8.08
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Table 7 Natural frequencies obtained through the DSM and Eq. (20) for sliding-pinned boundary conditions

M, ]

79 T

Y/
%

A
X

o)

Mode number

DSM results (rad/s) Eq. (20) results (rad/s)

Percentage error (%)

1 187.30 186.22 0.57
2 781.66 777.86 0.49
3 1784.25 1784.46 0.01
4 3094.66 3089.85 0.16
5 4686.94 4635.69 1.09
6 6744.15 6564.00 2.67
7 9263.24 9047.55 2.33
8 11978.00 12030.78 0.44
9 14871.14 15197.56 2.20
10 18474.65 18438.81 0.19

Appendix B. Measurability Check of the 20%
Cracked Beam

Suppose k is the magnitude of error in experimental fre-
quency results (caused by uncertainties in measurement,
inaccuracies in mass placement, human factors, etc.) and
ftrue 18 the true value of natural frequency, the experimen-
tal frequency results can be expressed as

f = ftrue kK (Bl)

According to Egs. (24)-(25), natural frequency shift can
be written as

Af:AftrueiQ’{

and the change of natural frequency shift can be written
as

A<Af> :A(Aftrue) + 4k

The measurability of A f and A (A f) when the mass
passes the crack can be confirmed if |A f| > 2x and
|[A (A f)] > 4k.

To estimate the values of x, repeatability checks are
required. In the experiment, the bolts securing the roving
mass were manually tightened to approximate a rigid connec-
tion between the mass and the beam. After each impact ham-
mer test, the bolts were loosened so the mass could be moved
to the next location, then retightened before the subsequent

(B2)

(B3)

@ Springer

test. Throughout this procedure, variations in bolt-tightening
torque and small inaccuracies in mass positioning could intro-
duce additional variability into the measured natural frequen-
cies. Therefore, it is necessary to examine the repeatability of
the measured natural frequencies by repeatedly loosening and
retightening the bolts. With an acceptable repeatability check,
the variance caused by bolt-tightening torque and small error
in mass positioning can be considered negligible, allowing
the observed frequency shifts to be attributed solely to the
presence of the crack and the roving mass.

Fig. 31 shows the magnitude plot of FRF of five repeat-
ability tests conducted on an intact beam carrying the roving
mass with the maximum rotary inertia setting. The rov-
ing mass was positioned 0.36m from the beam’s left end.
Between successive tests, the mass was removed and then
reattached at the same location. The five curves show virtu-
ally minor difference from one another, indicating that the
test setup achieved high repeatability.

Table 8 presents the first eight natural frequencies obtained
from the repeatability tests, along with the corresponding stan-
dard deviations. The variations across tests are very small, fur-
ther confirming the high repeatability of the measurements.

The values of can be estimated using the standard devia-
tion between the repeatability tests in Table 8. When the mass
passed the 20% crack, the measured using different rotary
inertia settings is compared with in Table 9, and the compari-
son between and is made in Table 10. From the comparison,
and are generally larger than and, respectively. Thus the mea-
surability of frequency changes when the roving mass passed
the 20% crack in the experiment can be confirmed.
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Fig.31 The accelerance FRF
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Table 8 The natural frequency results of five repeatability tests

300

400

500

Frequency [Hz]

700 800

Mode number

Natural frequency results (Hz)

Standard deviation

Test 1 Test 2 Test 3 Test 4 Test 5

1 14.3954 14.3963 14.3924 14.3918 14.3902 0.0026

2 32.8590 32.8759 32.8832 32.8575 32.8295 0.0208

3 80.4844 80.4221 80.3685 80.3327 80.2926 0.0753

4 144.4534 144.0717 144.0472 143.5125 143.4537 0.4203

5 217.0632 216.9812 216.8912 216.8645 216.8626 0.0876

6 377.9789 378.2351 378.1126 378.0502 377.8934 0.1301

7 436.8046 436.7572 436.7101 436.5743 436.6282 0.0937

8 638.1071 638.0135 638.0793 638.0734 637.9210 0.0742

Table 9 The comparison between A f and 2k (unit: Hz) Table 10 The comparison between A (A f) and 4« (unit: Hz)
Mode number o A f with different rotary inertia Mode number Ak A (A f) with different rotary inertia

settings settings
Maximum Medium Minimum Maximum Medium Minimum

1 0.0051 0.0622 0.1011 0.1096 1 0.0102 —0.0231 0.0202 0.0147
2 0.0415 0.4220 0.4529 —0.2303 2 0.0830  0.1910 0.4617 0.2268
3 0.1506  —2.2019 —2.1366 —0.9875 3 03012 -—1.2334 —1.0042 —0.3507
4 0.8405 —0.1157 —1.2055 —5.3741 4 1.6810 —1.7065 —2.1394 —4.4697
5 0.1751 3.0519 5.0702 10.3636 5 0.3503 2.8014 4.7191 8.7810
6 0.2602  —8.2519 —9.6268  —10.6534 6 0.5203 —2.1050 -3.3794 —-4.6859
7 0.1875 11.2656 15.5167 20.6261 7 0.3749 1.8027 5.6699 9.9282
8 0.1484  —4.4400 —8.0386  —11.8222 8 0.2968 12157 0.4961 —2.6686
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