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such as natural frequencies, mode shapes, and modal damp-
ing are altered due to damage-induced changes in physical 
properties such as the mass, damping, and, in particular, 
stiffness of the structure. The variation of modal parame-
ters due to damage enables the formulation of a structural 
inverse problem, in which the objective is to reconstruct 
local changes in physical properties, thus revealing the pres-
ence, location, and severity of any damage. Vibration-based 
damage identification has gained considerable attention in 
research due to several advantages. Firstly, such methods 
are generally cost-effective and do not require extensive 
instrumentation. For example, it is possible to extract the 
dynamic characteristics of large or complex structures using 
a limited number of sensors. Secondly, most vibration-based 
techniques require equipment that is compact, user-friendly, 
and convenient to mount on the target structure. Thirdly, 
vibration-based methods do not require prior knowledge of 

Introduction

Structural Health Monitoring (SHM) relies on the develop-
ment and application of reliable and robust indices capable 
of identifying, quantifying, and, when feasible, predict-
ing damage in structures to avoid severe consequences 
[1]. Vibration-based damage identification is a promising 
approach in SHM based on the dynamic response character-
istics of structures. When damage occurs, modal parameters 
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Abstract
Purpose  Vibration-based damage identification methods rely on robust damage indices to detect and localize structural 
defects. While natural frequency shifts are often cost-effective and easily obtainable, their sensitivity to minor damage and 
dependence on baseline (intact) data remain key challenges. Existing roving-mass-based methods often suffer from mass-
induced modal fluctuations that generate false peaks in frequency-location curves, limiting their reliability for crack local-
ization. This study aims to develop a robust crack location index for beam-like structures that improves crack localization 
accuracy when a roving mass with rotary inertia traverses a crack, while relying primarily on measured natural frequencies.
Methods  An analytical expression for natural frequency estimation is derived and validated against results from the Dynamic 
Stiffness Method, forming the basis for the index formulation. The proposed index integrates measured natural frequencies 
with analytically available modal properties of an intact Euler-Bernoulli beam, allowing false peaks to be suppressed without 
requiring baseline frequency measurements.
Results  Numerical studies demonstrate that the index reliably identifies single and multiple cracks and performs consistently 
across different boundary conditions, with the combined use of the 2nd and 3rd modes providing the most stable diagnostic 
signatures. Experimental validation confirms the index’s superiority over the change of natural frequency shift; the results 
show that the index can pinpoint crack locations with high accuracy without requiring experimental baseline measurements 
from the undamaged structure.
Conclusion  The proposed index provides a robust and baseline-free approach for crack localization in beam-like structures. 
By incorporating intact-beam modal information into post-processing, the method improves damage identifiability.
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the possible damage location, which makes them suitable 
for global monitoring.

Damage Indices

A widely adopted strategy for solving the structural inverse 
problem involves developing indices that are highly sensi-
tive to structural damage. These indices are often based on 
different modal characteristics such as natural frequency, 
mode shape, modal curvature, modal strain energy, and 
modal flexibility [2]. For example, Khanahmadi et al. [3] 
extended 1D mode shape signals to 2D and proposed two 
damage indices based on wavelet transform and signal cur-
vature analysis. Damage locations were indicated by the 
discontinuities or peaks in the graph of damage indices. 
Zhu and Zhang [4] presented a damage index based on the 
frequency decay induced by breathing cracks in a concrete 
beam. Nick et al. [5] developed damage indices based on 
modal flexibility and modal strain energy and the peaks in 
the curves of indices showed the damage location. Brethee 
et al. [6] introduced damage indices based on the damage-
induced changes in modal curvature of laminated compos-
ite plates. The locations of fibre breakage and delamination 
were indicated by the peaks in the curves of the indices. 
He et al. [7] took the modal curvature difference before and 
after the damage occurred as the damage index to identify 
damages in a composite cantilever beam. To tackle noise 
and measurement inaccuracies in modal curvature, Namah 
and Brethee [8] proposed another damage index based on 
the normalized modal curvature of individual modes to 
detect single and double cracks of 30% or 40% severity 
in beams. The index was tested on Euler-Bernoulli beams 
with standard boundary conditions, for which the intact 
modal characteristics can be computed analytically. This 
eliminates the need for experimental modal testing of the 
undamaged beams when constructing the index. In recent 
years, Machine Learning and Deep Learning are becoming 
increasingly popular and have been utilized to enhance the 
performance of various damage indices [9–11]. Other recent 
studies have also focused on developing damage indices 
using wavelet transforms. For example, to identify dam-
age in columns under axial loads, Khanahmadi et al. [12] 
simulated the damage as a decrease of the modulus of elas-
ticity and proposed a damage location index (DLI) based 
on the details of the wavelet coefficients obtained from the 
wavelet analysis of the mode shapes of the damaged col-
umn. The DLI was demonstrated to be largely independent 
of the magnitude of the axial load, which indicates the DLI’s 
potential even near high-load conditions. Further extending 
these concepts to plate-like structures, Khanahmadi et al. 
[13] developed an irregularity detection index (IDI) for 3D 
sandwich panels based on a validated finite element model 

(with the damage defined as a reduction of the modulus 
of elasticity of the concrete layer). Their approach utilizes 
2D wavelet analysis of combined primary and secondary 
mode shapes to identify damaged regions. The IDI shows 
monotonic sensitivity to damage severity, which potentially 
allows qualitative severity assessment apart from localiza-
tion. It was also found that damage detection at one location 
does not interfere with detection at other locations, which 
suggests low ‘cross-talk’ in IDI and clearer interpretation. 
To address the specific challenge of interface debonding, 
Khanahmadi et al. [14] developed a mode shape sensitivity-
based wavelet feature extraction method for concrete-filled 
steel tubes. Debonding was simulated as a uniform reduc-
tion of the concrete modulus of elasticity at the interface 
to at least 3 mm depth. They proposed a total normalized 
irregularity detection index integrating horizontal, vertical, 
and diagonal detail coefficients from 2D discrete wavelet 
transform applied to corrected modal signals. Debond-
ing near column ends, a region typically problematic due 
to boundary stiffness and mode shape curvature, was also 
investigated. In another study, instead of assessing the accu-
mulation of irregularities, Khanahmadi et al. [15] focused 
on the direct identification of irregularity peaks in an irreg-
ularity detection index at the sites of debonding based on 
modal signal processing using 2D wavelet transform. As the 
severity of debonding increases, the corresponding irregu-
larity peak identified by the index also increases.

Among different damage indices, natural frequency shift 
is the most straightforward and intuitive index for signal-
ling the presence of damage. Methods using natural fre-
quencies have been extensively investigated as frequency 
measurements are often efficient and reliable. However, 
such methods also face limitations. One key challenge lies 
in the measurability of damage-induced natural frequency 
changes, particularly when the damage is minor or when 
the measurements are affected by considerable noise. From 
this perspective, Sun et al. [16] investigated the feasibility 
of natural frequency-based crack detection combining fre-
quency shift measurability and structural integrity, which 
indicates that the material’s ductility or brittleness can influ-
ence the measurability substantially.

The Roving Mass Technique

Apart from the detectability of a frequency shift, the absence 
of baseline information (i.e. the natural frequencies of the 
intact structure) poses another challenge – identifying dam-
age location solely from the altered natural frequencies that 
do not contain any spatial information of the damage. To 
address this, several researchers have introduced an aux-
iliary mass as a probe to assist damage identification. For 
example, by sequentially attaching a mass at different points 
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along a beam - an approach commonly referred to as the sta-
tionary roving mass technique - a curve of natural frequency 
versus mass location can be obtained. Applying a wavelet 
transform to the curve allows for the exposure of crack-
induced local perturbations in the detail coefficients, which 
can effectively reveal the crack location [17, 18]. The roving 
mass technique has also been extended to other structures 
such as rectangular plates [19] and cylindrical shells [20] 
where local thickness reductions were introduced as dam-
age and the accelerometer served as the auxiliary mass. In 
[19], by positioning the accelerometer at various points on 
the plate and measuring the fundamental natural frequency, 
a frequency shift surface was established. Local changes 
in the curvature of this surface revealed the damage loca-
tion. In [20], the accelerometer roved around the cylindrical 
shell’s circumference and a frequency shift curve (similar 
to the curve of frequency versus mass location in beams) 
was obtained, with the lowest point on the curve indicating 
damage location.

The natural frequency shift caused by a roving mass 
passing over a crack has been confirmed with high-preci-
sion frequency measurement systems such as quasi-optical 
coherence vibration tomography in [21], however, the depth 
of the introduced saw cut reached half of the thickness of 
the tested beam, indicating a relatively severe crack. Wang 
et al. [22] constructed a spatial curve named the frequency 
shift path by roving an accelerometer (serving as an aux-
iliary mass) along a beam. The main characteristic of the 
spatial curve is that its projection onto the time-frequency 
plane is the conventional curve of natural frequency versus 
mass location, and its projection onto the time-amplitude 
plane approximates the power mode shape [23]. Thus the 
spatial curve contains information of both frequency shift 
and amplitude variation induced by the mass traversing a 
damaged region. The curvature of the spatial curve was 
taken as the damage index, and damage corresponding to 
25% or 50% of beam thickness reduction was located. To 
improve the accuracy of crack detection, Solís et al. [24] 
introduced a methodology that integrates the roving mass 
technique with baseline data. As the mass was sequentially 
repositioned along the beam, experimental modal analysis 
was conducted at each position. The difference between the 
damaged and undamaged mode shapes was then analysed 
using wavelet transform. To enhance damage sensitivity, 
wavelet coefficients across all mass positions were summed 
based on weighting parameters derived from the natural fre-
quency shifts between damaged and intact states, as well 
as the estimated noise levels for each mode. This weight-
ing emphasized contributions from mode shapes that were 
both strongly affected by damage and exhibited low noise. 
In experimental validation, damage levels corresponding to 
10%, 20%, and 50% thickness reductions were detected. 

However, the identification of the 10% damage case proved 
less reliable due to increased sensor-induced noise, which 
tended to obscure the damage signature.

Beyond its application to common beams and plates, the 
stationary roving mass technique has also been employed 
for crack detection in other structural models such as a com-
pressed natural gas cylinder [25], a railway track model 
[26], a layered beam model [18], a double-beam system 
[27], and a roving disc [28]. In the aforementioned stud-
ies, the influence of the roving mass was typically limited 
to its translational inertia during vibration, while the effect 
of rotary inertia was neglected. To address this limitation, 
Cannizzaro et al. [29] introduced the concept of a roving 
body with rotary inertia and theoretically demonstrated that 
when the body passes over a crack on a beam, the natural 
frequencies of the beam shift abruptly. The underlying ratio-
nale is that the crack brings about a rotation discontinuity 
of the beam cross-section, which leads to a discontinuity in 
the inertial moment caused by roving mass, thus noticeable 
frequency changes can be observed when the mass passes 
the discontinuity, i.e. the cracked cross-section. Since the 
inertial moment is proportional to frequency squared, the 
frequency change becomes more discernible as the mode 
number increases [30]. Subsequently, Ilanko et al. [31] pre-
sented a numerical study based on the Rayleigh-Ritz method 
where natural frequencies were calculated when a roving 
body with rotary inertia traverses a partial crack on a plate, 
and similar abrupt frequency shifts were also observed. 
Utilizing the frequency shifts in [29, 31], it is possible to 
identify damage solely from the measured natural frequen-
cies without baseline information or prior knowledge of the 
structure. However, the practical measurability of such fre-
quency shifts with respect to crack severity should be inves-
tigated. In particular, the fact that the rotary inertia, instead 
of acting at a point as it does in theoretical derivations, is 
distributed over a small contact area would potentially make 
the frequency shift less discernible in practice.

Recent Work

To address the above concerns, a recent paper presented 
theoretical and experimental investigations to verify the 
presence and detectability of the natural frequency shift 
when a roving body with rotary inertia passes over a crack 
[32]. A systematic comparison between experimental, theo-
retical, and simulation results was made in [32], which shed 
light on the feasibility of measuring theoretically significant 
frequency shift using impact hammer tests. Two cracked 
beams, with crack depths of 20% and 40% of the beam 
thickness, respectively, were tested. The natural frequency 
f  when the mass was located at various positions along 
the beam was measured, from which the frequency shift 
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20% cracked beam. The applicability of the proposed index 
is experimentally verified using the 20% and 40% cracked 
beams. Finally, Sect. 5 concludes the study by summariz-
ing the main findings, discussing limitations, and outlining 
directions for future work.

Crack Location Index

This section describes the development of a crack location 
index. An analytical expression for estimating the natural 
frequency of an Euler–Bernoulli beam carrying a mass with 
rotary inertia is derived and verified against results obtained 
from the DSM. Based on this formulation, the crack loca-
tion index is defined.

The Equation for Natural Frequency Estimation

Figure 1 shows a uniform Euler-Bernoulli beam carrying a 
roving mass with rotary inertia where M  and J  denote the 
translational inertia and rotary inertia of the roving mass, 
respectively, and x0 is the coordinate of the mass location. 
The mathematical model developed in this paper is based 
on Euler-Bernoulli beam theory. This assumption is justified 
by the high slenderness ratio of the beam investigated in 
this work (as detailed in Sect. 3). For such a slender beam, 
the effects of shear deformation and the rotary inertia of the 
beam cross-section are negligible for the lower vibration 
modes considered [36, 37]. It should be noted, however, 
that while the beam’s rotary inertia is neglected, the rotary 
inertia of the roving mass, J , is explicitly included in the 
formulation, as it is a localized effect that significantly influ-
ences the frequency shifts as the mass traverses the crack.

Consider the free-body diagram of an element of the 
beam of length dx as shown in Fig. 2, where Mb(x, t) is 
the bending moment, F (x, t) is the shear force, and v(x, t) 
is the transverse deflection of the beam. The force equilib-
rium gives

between adjacent mass locations (i.e. ∆ f ) and the change 
in the frequency shift between adjacent mass locations (i.e. 
∆ (∆ f)) were calculated. The results demonstrated that 
a pronounced frequency shift can be reliably captured as 
the roving mass traverses the 40% crack. Although the fre-
quency shift associated with the 20% crack was also mea-
surable, identifying the crack location based solely on the 
peaks in ∆ f  or ∆ (∆ f) curves proved insufficient for 
accurate crack localization. To pinpoint the crack location, 
a more robust crack location index than ∆ f  and ∆ (∆ f) 
is needed.

While roving mass techniques are well-established, they 
can suffer from false alarms in damage indices caused by 
mass-induced modal fluctuations, as seen in [32]. Further-
more, the influence of the mass’s rotary inertia is often 
neglected. This study aims to address this gap by developing 
an effective crack location index that specifically accounts 
for rotary inertia and integrates measured frequency shifts 
with analytical modal information of the intact beam to 
attenuate mass-induced false alarms and isolate the true 
crack-induced signature. The method is considered ‘base-
line-free’ as it does not require frequency measurements 
from the intact state of the damaged structure. Instead, it 
utilizes the theoretical modal properties of a generic intact 
beam, which are readily available [33].

The remainder of the paper is structured as follows. In 
Sect. 2, an analytical expression for estimating the natu-
ral frequency of an Euler-Bernoulli beam carrying a rov-
ing mass with rotary inertia is derived and verified against 
results obtained from the Dynamic Stiffness Method (DSM) 
[30, 34, 35]. Based on this formulation, the crack location 
index is developed. Section 3 evaluates the robustness of 
the crack location index through numerical studies based 
on the DSM model, incorporating different crack locations, 
various boundary conditions, and multi-crack identifica-
tion. Section 4 provides an overview of the experimental 
set-up, introduces the process of natural frequency extrac-
tion from the measured signal, and discusses results for the 

Fig. 1  A beam carrying a roving 
mass with rotary inertia
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The mass is rigidly attached to the beam, thus

qM (t) = v (x0, t) � (8)

θ (t) = v
′ (x0, t) � (9)

Using the modal superposition method [38–40], the beam 
deflection can be expressed as

v (x, t) =
∑

n ϕn (x) qn (t) � (10)

	 where ϕ n (x) is the nth mode shape of the beam 
without the attached mass, found by solving the equation 
[41]

EIϕ
′ ′ ′ ′

n (x) − −
mω 2

bnϕ n (x) = 0 � (11)

and qn (t) is the generalized coordinate or modal partici-
pation coefficient. In Eq. (11), ω bn is the nth natural fre-
quency of the bare beam (i.e. the beam without the mass).

Substituting Eqs. (8)-(10) into Eq. (7) and multiplying by 
ϕ m (x) on both sides and integrating over the whole beam 
yields

´ L

0
−
mϕ m (x)

∑
nϕ n (x) q̈n (t) dx +

´ L

0 EIϕ m (x)
∑

nϕ
′ ′ ′ ′

n (x) qn (t) dx =´ L

0 ϕ m (x)
[
J

∑
nϕ

′

n (x0) q̈n (t)
]

δ
′

(x − x0) dx−´ L

0 ϕ m (x) [M
∑

nϕ n (x0) q̈n (t)] δ (x − x0) dx

� (12)

Considering the orthogonal property of mode shapes [37]

´ L

0 ϕ m (x) ϕ n (x) dx =
{

0 (m ≠ n)
ψ m (m = n) � (13)

the first term on the left-hand side of Eq. (12) can be simpli-
fied as

−F + (F + dF ) = −
mv̈dx + Mq̈M (t) δ (x − x0) dx � (1)

	 where 
−
m is mass per unit length, qM (t) is the 

transverse displacement of the mass, δ (x − x0) is the 
Dirac delta function, and the overdot represents the deriva-
tive with respect to time. The moment equilibrium equation 
about point P  leads to

−Mb + (Mb + dMb) + (F + dF ) dx = Jθ̈ (t) δ (x − x0) dx � (2)

	 where θ (t) is the rotation of the mass. Writing 
dF = ∂ F

∂ x dx and dMb = ∂ Mb

∂ x dx and disregarding terms 
involving second powers of dx, Eqs.  (1) and (2) can be 
written as

∂ F
∂ x = −

mv̈ + Mq̈M (t) δ (x − x0) � (3)

F = − ∂ Mb

∂ x + Jθ̈ (t) δ (x − x0) � (4)

Substituting Eq. (4) into Eq. (3) gives

− ∂ 2Mb

∂ x2 + Jθ̈ (t) δ
′

(x − x0) = −
mv̈ + Mq̈M (t) δ (x − x0) � (5)

	 where the prime represents the derivative with 
respect to x. For a uniform Euler-Bernoulli beam, the rela-
tionship between bending moment and deflection can be 
expressed as [37]

Mb (x, t) = EI ∂ 2v(x,t)
∂ x2 � (6)

where EI  is flexural rigidity. Inserting Eq. (6) into Eq. (5), 
the governing equation of motion of the beam becomes:

−
mv̈ (x, t) + EIv

′ ′ ′ ′ (x, t) = Jθ̈ (t) δ
′

(x − x0) − Mq̈M (t) δ (x − x0) � (7)

Fig. 2  The free-body diagram 
of a beam element in transverse 
vibration
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natural frequency versus mass location in Sect. 4.3. Equa-
tion  (20) also reflects why natural frequency shifts occur 
when a roving mass with rotary inertia passes over a crack. 
A crack brings about a discontinuity in ϕ ′

m (x), which leads 
to a discontinuity in ω m through the term Jϕ ′

m
2. There-

fore, incorporating rotary inertia amplifies the frequency 
shift when the mass passes the crack.

The expression for the change in natural frequency can 
be found by taking the first derivative of ω m with respect 
to mass location, i.e.

dω m(x)
dx =

−ω bm

√
−
mψ m[Mϕ m(x)ϕ ′

m(x)+Jϕ ′
m(x)ϕ ′ ′

m (x)][
−
mψ m+Mϕ 2

m(x)+Jϕ ′
m

2(x)
] 3

2
� (21)

From Eq. (21), apart from the mode shape and modal slope, 
dω m(x)

dx  is also related to ϕ ′ ′
m (x), i.e. the modal curvature 

of the bare beam at the mass location. As ϕ m (x), ϕ ′
m (x), 

and ϕ ′ ′
m (x) are not independent of each other, it is impos-

sible to deduce the extrema of ω m and dω m(x)
dx  directly 

from the extrema of ϕ m (x), ϕ ′
m (x), or ϕ ′ ′

m (x). How-
ever, the involvement of modal data in the expressions of 
ω m and dω m(x)

dx  provides some insights for devising the 
crack location index in Sect. 2.3. 

Numerical Verification

While an exact expression for the natural frequency of a 
beam carrying a mass is not available, to verify the accu-
racy of Eq. (20), the natural frequency of a simply supported 
steel beam carrying a mass with rotary inertia is calculated 
using the DSM. The dimensions of the beam and the mass 
location are shown in Fig. 3. For the material properties, the 
density ρ  is 7850 kg/m3, the elastic modulus E is 200GPa, 
and the Poisson’s ratio ν  is 0.3.

The rotary inertia of the beam Jbeam is calculated about 
the central axis O′  as shown in Fig. 3. τ  and φ  are dimen-
sionless parameters defined as the ratios between the mass 

´ L

0
−
mϕ m (x)

∑
nϕ n (x) q̈n (t) dx = −

mψ mq̈m (t) � (14)

Considering Eq. (11) and Eq. (13), the second term on the 
left-hand side of Eq. (12) can be written as

´ L

0 EIϕ m (x)
∑

nϕ
′ ′ ′ ′

n (x) qn (t) dx = −
mω 2

bmψ mqm (t) � (15)

Using Eq. (13) and the sifting property of δ  function, the 
right-hand side of Eq. (12) can be expressed as

´ L

0 ϕm (x) [J
∑

n ϕ′
n (xo) q̈n (t)] δ′ (x − xo) dx−´ L

0 ϕm (x) [M
∑

n ϕn (xo) q̈n (t)] δ (x − xo) dx =
−Jϕ′2

m (xo) q̈m (t) − Mϕ2
m (xo) q̈m (t) − R1 − R2

� (16)

	 where

R1 = Jϕ
′

m (x0)
∑

i̸= mϕ
′

i (x0) q̈i (t) � (17)

R2 = Mϕ m (x0)
∑

i̸= mϕ i (x0) q̈i (t) � (18)

Therefore, rearranging and rewriting Eq. (12) gives
[ −
m ψ m + Mϕ 2

m (x0) + Jϕ ′
m

2 (x0)
]

q̈m (t) +
−
m ω 2

bmψ mqm (t) = −R1 − R2

� (19)

By neglecting the cross-modal terms i.e. R1 and R2 on the 
right-hand side of Eq. (19), the mth natural frequency of the 
beam carrying a mass at x0 can be approximated as

ω 2
m (x0) = ω 2

bm

1+ Mϕ 2
m(x0)+Jϕ ′

m
2(x0)

−
mψ m

� (20)

From Eq. (20), ω m is dependent on the natural frequency 
of the bare beam and the modal data of the bare beam at the 
mass location. It can be seen how M  and J  come into play. 
The presence of M  and J  reduces ω m. M  is involved by 
multiplying the mode shape squared at the mass location, 
while the dependence of J  involves the modal slope at the 
mass location. This explains the fluctuation of the curve of 

Fig. 3  The geometry of the 
simply supported beam carrying 
a mass with rotary inertia
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Repeating this procedure for the natural frequencies eval-
uated at all mass locations, the resulting curves of ∆ f  
are obtained. The change of natural frequency shift (i.e. 
∆ (∆ f)) is also calculated as an attempt to highlight the 
crack location. ∆ (∆ f) is defined as follows

∆ (∆ fi) = ∆ fi − ∆ fi−1 (i = 3, 4, 5, . . . ) � (25)

Therefore, ∆ (∆ f) is the difference between the ∆ f  
when the mass is located in two adjacent positions.

It is shown in [32] that false peaks in the curve of ∆ (∆ f) 
versus mass location make it challenging to determine the 
crack location. To suppress those peaks in ∆ (∆ f), a crack 
location index ζ  is introduced. When the coordinate of the 
mass location is x0, the crack location index for the mth 
mode at x0, i.e. ζ m (x0), is defined as

ζ m (x0) = ∆ (∆ fm) |x0 • ϕ ′
m (x0) • ϕ ′ ′ ′

m (x0) � (26)

For an intact beam carrying a mass at x0, it is shown in 
Eq.  (20) that ω m (or fm) is directly related to ϕ m (x0) 
and ϕ ′

m (x0). It is also shown in Eq. (21) that dω m(x)
dx  (or 

∆ fm) depends on ϕ m (x), ϕ ′
m (x), and ϕ ′ ′

m (x). This 
observation motivates the formulation of the crack loca-
tion index ζ  which employs the zero points of ϕ ′

m (x) and 
ϕ ′ ′ ′

m (x) to attenuate the extrema of ∆ (∆ f), thereby sup-
pressing false peaks and isolating the peak corresponding to 
the crack location. The rationale behind the formulation of 
ζ  is demonstrated as follows. 

Equation (21) can be rewritten as

dω m(x)
dx = −KmQm (x) G

− 3
2

m (x) � (27)

	 where

Km = ω bm

√
−
mψ m

� (28)

Qm (x) = Mϕ m (x) ϕ
′

m (x) + Jϕ
′

m (x) ϕ
′ ′

m (x) � (29)

Gm (x) = −
m ψ m + Mϕ 2

m (x) + Jϕ ′
m

2 (x) � (30)

Thus the 2nd and 3rd derivatives of ω m (x) can be written 
as

d2ω m(x)
dx2 = Km

[
−Q

′

m (x) G
− 3

2
m (x) + 3

2 Qm (x) G
− 5

2
m (x) G

′

m (x)
]

� (31)

and

d3ω m(x)
dx3 =

Km
−Q′ ′

m (x)G2
m(x)+3Q′

m(x)Gm(x)G′
m(x)− 15

4 Qm(x)G′
m

2(x)+ 3
2 Qm(x)Gm(x)G′ ′

m (x)

G

7/
2

m (x)

� (32)

and beam for quantifying the translational inertia and rotary 
inertia of the mass, and are expressed as

τ = M
Mbeam

� (22)

φ = J
Jbeam

� (23)

For a simply supported beam without a mass, the formulas 
for the natural frequencies and mode shapes can be found in 
[33]. When τ = 0.1 and φ = 0.001, the natural frequen-
cies are listed in Table 1.

Table 1 shows that Eq. (20) gives a very good estimate of 
the natural frequency of a beam carrying a mass with rotary 
inertia. For the same beam carrying the same mass but with 
various boundary conditions (such as clamped-clamped, 
clamped-pinned, clamped-free, sliding-pinned, etc.), a com-
parison of the results against the DSM results is listed in 
the Appendix A. Overall, Eq. (20) demonstrates satisfactory 
accuracy in natural frequency estimation.

Crack Location Index

By sequentially attaching a mass with rotary inertia to dif-
ferent positions along a beam, natural frequencies can be 
measured with respect to the mass location. The resulting 
frequency shifts occurring as the mass traverses a crack 
can be used to identify the crack location. Here it should 
be noted how the natural frequency shift (i.e. ∆ f ) and the 
change of natural frequency shift (i.e. ∆ (∆ f)) are calcu-
lated. When fi represents the natural frequency evaluated 
when the mass is at the ith position ( i=1, 2, 3, …), the natu-
ral frequency shift after the mass is moved from the (i − 1)
th to the ith position can be expressed as

∆ fi = fi − fi−1 (i = 2, 3, 4, . . . ) � (24)

Table 1  Natural frequencies obtained through the DSM and Eq. (20)
Mode number DSM results 

(rad/s)
Equation (20) 
results (rad/s)

Percentage 
error (%)

1 194.75 194.92 0.09
2 744.64 745.00 0.05
3 1661.60 1641.00 1.24
4 3031.07 2979.74 1.69
5 4843.61 4870.20 0.55
6 6957.92 7182.00 3.22
7 9281.31 9540.22 2.79
8 12049.70 11914.86 1.12
9 15263.28 14769.00 3.24
10 18076.71 18612.19 2.96
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Clamped-Clamped Cracked Beam

A clamped-clamped steel beam with a 20% thickness reduc-
tion crack and carrying a roving mass with rotary inertia 
is modelled using the DSM. The beam has dimensions of 
0.623 m ×  0.020 m ×  0.002 m (length ×  width ×  thick-
ness). The crack is located at 0.394 m from the left end of 
the beam. The spacing between adjacent mass locations is 
0.004 m. The material properties of the beam and the size of 
the mass are listed in Table 2.

The curves of f , ∆ (∆ f), and ζ  versus mass location 
are shown in Fig. 4(b). The modal data of the 8th mode of 
the clamped-clamped intact bare beam is shown in Fig. 4(a) 
for comparison. It can be observed that some of the local 
maximums of the curve of f  align with the extrema of the 
mode shape and modal curvature of the intact bare beam. 
The extrema of the curve of f  correspond to the peaks in the 
curve of ∆ (∆ f). Therefore, multiplying ∆ (∆ f) by the 
derivative of mode shape (i.e. ϕ ′

m (x)) and the derivative 
of modal curvature (i.e. ϕ ′ ′ ′

m (x)) would help suppress the 
peaks in the curve of ∆ (∆ f). As shown in the curve of ζ , 
there are fewer peaks compared with the curve of ∆ (∆ f). 

Although some peaks are suppressed, the remaining 
peaks in the curve of ζ  for the 8th mode still impede the 
determination of crack location. However, as the mode 
number decreases, the number of remaining peaks in the 
curve of ζ  reduces. The results of the 7th mode to the 1 st 
mode are shown in Figs. 5, 6, 7, 8, 9, 10 and 11. Observ-
ing these figures, the crack location (at 0.394 m) becomes 
increasingly visible in the curve of ζ  as the mode num-
ber decreases. The crack location can be clearly seen in 
the curves of ζ  for the first three modes because there are 
no false peaks except near the boundaries. The curve of f  
reaches extrema when the mass is located near the boundar-
ies possibly due to the large contribution of ϕ ′

m (x), and 
the resulting peaks in the curve of ∆ (∆ f) cannot be sup-
pressed using the current crack location index. Therefore, 
the crack location index is most effective for the first three 
modes excluding regions near boundaries. Considering that 
∆ (∆ f) for the 1 st mode does not give meaningful results 
in the experiment due to the small magnitude of the peak 
at the crack location, the 2nd and 3rd modes are used for 
locating the crack. It should be noted that the selection of 
the 2nd and 3rd modes represents an optimal balance for the 
application of ζ . Lower modes (e.g. mode 1) possess low 
modal curvature, resulting in reduced sensitivity to small 
cracks. Conversely, higher modes (e.g. mode 8) exhibit 

	 where

Q′
m (x) = M

[
ϕ ′

m
2 (x) + ϕ m (x) ϕ ′ ′

m (x)
]

+ J
[
ϕ ′ ′

m
2 (x) + ϕ ′

m (x) ϕ ′ ′ ′
m (x)

]
� (33)

Q′ ′
m (x) = M

[
3ϕ ′

m (x) ϕ ′ ′
m (x) + ϕ m (x) ϕ ′ ′ ′

m (x)
]

+
J

[
3ϕ ′ ′

m (x) ϕ ′ ′ ′
m (x) + ϕ ′

m (x) ϕ ′ ′ ′ ′
m (x)

] � (34)

G′
m (x) = 2

[
Mϕ m (x) ϕ ′

m (x) + Jϕ ′
m (x) ϕ ′ ′

m (x)
]

� (35)

G′ ′
m (x) = 2M

[
ϕ ′

m
2 (x) + ϕ m (x) ϕ ′ ′

m (x)
]

+2J
[
ϕ ′ ′

m
2 (x) + ϕ ′

m (x) ϕ ′ ′ ′
m (x)

] � (36)

Suppose that at a given mass location 
x0, ϕ ′

m (x0) = ϕ ′ ′ ′
m (x0) = 0, which is possible when the 

mode shape ϕ m (x) can be expressed using trigonometric 
functions (e.g. beams with pinned-pinned, sliding-pinned, 
and sliding-sliding boundary conditions [33]). It leads 
to Qm (x0) = Q′ ′

m (x0) = G′
m (x0) = 0, and hence the 

numerator of Eq. (32) becomes zero and d3ω m(x)
dx3

∣∣∣
x0

= 0, 

which means d2ω m(x)
dx2  reaches a local extreme at x0. As 

the extrema of d2ω m(x)
dx2  are equivalent to the peaks in 

∆ (∆ fm), multiplying ∆ (∆ fm) |x0  by ϕ ′
m (x0) and 

ϕ ′ ′ ′
m (x0) suppresses the peak when the mass coordinate is 

x0. Thus Eq. (26) can be formulated. 

Although the formulation of ζ  can be analytically justi-
fied for beams whose mode shapes ϕ m (x) can be expressed 
in trigonometric functions, its effectiveness may extend 
beyond these specific cases. This is shown in Sect. 3 with 
beams whose mode shapes are represented by combina-
tions of trigonometric and hyperbolic functions (e.g. beams 
with clamped-clamped, clamped-pinned, and clamped-free 
boundary conditions [33]).

Numerical Results

To verify the effectiveness of the proposed crack location 
index, a series of numerical examples based on the DSM 
are presented in this section. The crack locations or beam 
boundary conditions are varied across the examples to eval-
uate whether the crack location index performs well under 
different circumstances.

Density ρ Young’s modulus 
E

Shear modulus 
G

Poisson’s 
ratio ν

Dimension-
less mass τ

Dimensionless 
rotary inertia φ

7571.43 kg/m3 188.58GPa 75GPa 0.303 1.15 0.17

Table 2  Parameters of the beam 
and roving mass
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Fig. 4  The information extracted from the 8th mode. (a) the modal data for the 8th mode of the intact bare beam, (b) the natural frequency data 
and ζ for the 8th mode of the cracked beam carrying a roving mass (20% crack at 0.394 m)
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be removed. As the mode number drops, the modal fluc-
tuations reduce, and fewer false peaks remain unsuppressed 
after applying ζ . An optimal balance can be reached in the 
2nd and 3rd modes where all false peaks except those near 

shorter wavelengths and intensified fluctuations in the fre-
quency curve. These fluctuations generate multiple false 
peaks in ∆ (∆ f), and although ζ  analytically suppresses 
some of them (as shown in Sect. 2.3), not all false peaks can 

Fig. 6  The natural frequency data and ζ  for the 6th mode (20% crack at 0.394 m)

 

Fig. 5  The natural frequency data and ζ  for the 7th mode (20% crack at 0.394 m)
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curves of ζ  for the first three modes are shown in Fig. 12. 
These near-boundary regions are excluded because the cur-
rent index formulation is less reliable near the supports due 
to strong boundary condition effects, a limitation that is 

boundaries can be suppressed by ζ , allowing the crack-
induced signature to be highlighted.

By only including the results from 0.1 m to 0.5 m, i.e. 
by excluding the regions near boundaries, the resulting 

Fig. 8  The natural frequency data and ζ  for the 4th mode (20% crack at 0.394 m)

 

Fig. 7  The natural frequency data and ζ  for the 5th mode (20% crack at 0.394 m)
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Fig. 10  The natural frequency data and ζ  for the 2nd mode (20% crack at 0.394 m)

 

Fig. 9  The natural frequency data and ζ  for the 3rd mode (20% crack at 0.394 m)
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Fig. 12  The curves of ζ 1, ζ 2, and ζ 3 excluding regions near boundaries (20% crack at 0.394 m)

 

Fig. 11  The natural frequency data and ζ  for the 1 st mode (20% crack at 0.394 m)
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for crack localization. The rationale is that if the crack lies 
near an antinode of the 2nd mode, ζ 2 (x0) approaches zero 
when the mass passes over the crack but ζ 3 (x0) may still 
successfully indicates the crack location, and vice versa. 
The following numerical examples, based on the DSM 
model in Sect. 3.1, are designed to evaluate this concept by 
modifying the crack location accordingly.

In the first scenario, the crack is located at 0.442 m where 
ϕ ′

2 (x0) is close to zero. The resulting curves of ζ  for the 
first three modes after excluding the regions near boundar-
ies are shown in Fig. 15. From Fig. 15, ζ 2 does not give 
meaningful results because the peak caused by the mass 
passing over the crack is also suppressed. In contrast, the 
peak in the curve of ζ 3 is unaffected and clearly indicates 
the crack location. The average of the x-coordinate of the 
two prominent peaks pinpoints the actual crack location (i.e. 
0.442 m).

In the second scenario, the crack is located at 0.486 m 
and thus ϕ ′

3 (x0) approaches zero when the mass passes 
the crack. Figure 16 shows the curves of ζ  for the first three 
modes after excluding the regions near boundaries. As illus-
trated, the curve of ζ 3 does exhibit a distinct peak apart 
from a minor increase near the beam’s midpoint. This small 
peak is a remnant from the suppression of a more signifi-
cant peak previously observed in Fig.  9(b). Nevertheless, 
the crack location remains identifiable through the peak in 
the curve of ζ 2. The crack location is indicated by the aver-
age of the x-coordinate of the two prominent peaks in the 
ζ 2 curve.

Overall, the combined use of ζ 2 and ζ 3 enhances the 
reliability of crack localization as the crack-induced peak 
consistently appears in at lease one of the ζ  curves. Even 
when the peak is attenuated in one mode due to the proxim-
ity of a mode shape extremum, it remains distinguishable 
in the other.

Alternate Boundary Conditions

In this section, the crack location index is evaluated for dif-
ferent boundary conditions. The numerical analysis uses 
the DSM model in Sect. 3.1, but with altered support con-
figurations. Figure  17 shows the resulting curves of ζ 1, 
ζ 2, and ζ 3 when the cracked beam is simply supported, 
clamped-pinned, and clamped-free, respectively. The crack 
is positioned at 0.394 m as in Sect. 3.1 and results near the 
boundaries are excluded. Although the boundary conditions 
vary, distinct peaks consistently emerge in the curves of ζ 2 
and ζ 3 as the mass passes over the crack and the crack 
location can be clearly identified (as indicated by the red 
dashed lines in Fig. 17), confirming the robustness of the 
proposed crack location index.

discussed further in the conclusion. From Fig. 12, the loca-
tion of the 20% crack can be pinpointed from the curves of 
the crack location index ζ . The average of the x-coordinate 
of the two prominent peaks (indicated by the red dashed 
lines in Fig.  12) is taken as the identified crack location, 
which matches the actual crack location (i.e. 0.394 m).

The Effect of Rotary Inertia and Mass

Based on the DSM model in Sect. 3.1, the effect of the rov-
ing rotary inertia on the crack location index for the first 
6 modes is shown in Fig. 13. The dimensionless mass τ  
is maintained as 1.15 and the dimensionless rotary inertia 
φ  varies from 0.03 to 0.17. From Fig. 13, the crack can 
be clearly identified by the average of the x-coordinate of 
the two prominent peaks in the first 3 modes. Increasing the 
rotary inertia helps amplify the peak at the crack location 
for the first 3 modes. As the mode number increases, addi-
tional false peaks remain after applying ζ  as previously 
mentioned, and the curves start to overlap, which means 
the effect of varying rotary inertia diminishes for higher 
modes. This agrees with the observation in [30]. Overall, 
a large rotary inertia would be favourable because the pro-
posed crack location index focuses on lower modes (the 2nd 
and 3rd modes, specifically) where the effect of varying the 
rotary inertia is more significant.

Figure 14 illustrates the effect of the roving mass on the 
crack location index for the first 6 modes. The dimension-
less rotary inertia φ  is fixed at 0.17 and the dimensionless 
mass τ  varies from 0.38 to 1.15. Compared with varying 
the rotary inertia, the effect of different mass on the peak 
at the crack location is less pronounced. For lower modes, 
a larger mass helps suppress the undulations of ζ  curves, 
thereby highlighting the peak at the crack location. As the 
mode number increases, more residual false peaks persist 
after applying ζ , and the influence of varying the mass 
becomes progressively weaker. Overall, the effect of mass 
on ζ  does not follow a monotonic pattern, thus some trial 
calculations were conducted when determining the mass in 
the experiment.

Alternate Crack Locations

This section explores scenarios where the crack is posi-
tioned close to the antinodes of the 2nd and 3rd mode shapes 
of the intact bare beam. In these cases, as the mass passes 
over the crack, ϕ ′

m (x0) (i.e. the slope of the mode shape 
at the crack location) is close to zero. Consequently, the 
derived index ζ m (x0) also approaches zero as indicated 
by Eq. (26), limiting its ability to indicate the crack location. 
To address this, both the 2nd and 3rd modes are utilized 
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Fig. 13  The curves of ζ  excluding regions near boundaries (20% crack at 0.394 m, τ = 1.15). (a) ζ for mode 4, 5, and 6, (b) ζ for mode 1, 2, and 3

 

1 3

Page 15 of 37     87 



Journal of Vibration Engineering & Technologies           (2026) 14:87 

Fig. 14  The curves of ζ  excluding regions near boundaries (20% crack at 0.394 m, φ = 0.17). (a) ζ for mode 4, 5, and 6, (b) ζ for mode 1, 2, 
and 3
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crack location index is applicable to multi-crack identifica-
tion. In this section, the numerical analysis uses the DSM 
model in Sect. 3.1 with modified crack configurations. 
Three cases are investigated, each featuring three randomly 
positioned cracks of 20% severity. The resulting curves of 

Multi-Crack Scenario

It has been demonstrated in [29] that when a roving mass 
with rotary inertia passes over multiple cracks on a beam, 
frequency shifts can be observed at each crack location. 
Therefore, it is also worth examining whether the proposed 

Fig. 16  The curves of ζ 1, ζ 2, and ζ 3 excluding regions near boundaries (20% crack at 0.486 m)

 

Fig. 15  The curves of ζ 1, ζ 2, and ζ 3 excluding regions near boundaries (20% crack at 0.442 m)
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Fig. 17  The curves of ζ 1, ζ 2, 
and ζ 3 for different boundary 
conditions (20% crack at 
0.394 m). (a) simply-supported 
beam, (b) clamped-pinned beam, 
(c) clamped-free beam
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Natural Frequency Extraction

During the impact hammer tests, the excitation and response 
signals were processed by a dynamic signal analyser (model: 
Data Physics QUATTRO) which gave the transfer function. 
SignalCalc 900 Series software was used to configure the 
signal analyser and visualize the signals. The data files con-
taining the transfer function signal were then exported to 
MATLAB for natural frequency extraction. Figure 21 shows 
a typical plot of the accelerance frequency response func-
tion (FRF) measured on the 20% cracked beam carrying the 
roving mass with the maximum rotary inertia setting, when 
the distance between the mass location and the left end of 
the beam is 0.256 m. The magnitude plot (top) highlights 
multiple resonance peaks over the 0–800  Hz frequency 
range, while the phase plot shows the expected 180° phase 
transitions across each natural frequency. The sharp reso-
nance peaks indicate the light damping of the system.

The process of natural frequency extraction consists 
of curve-fitting a theoretical expression for how an FRF 
behaves near resonance. This is required because the FRF 
is measured at discrete frequency points and the measured 
resonance peak does not necessarily align with the true res-
onance frequency (see Fig. 22). The single-degree-of-free-
dom (SDOF) circle-fit method was employed to improve 
the accuracy of natural frequency estimation. This method 
works adequately for structures whose frequency response 
functions exhibit well-separated modes which are lightly 
damped [42]. It is based on the fact that, for the general 
SDOF systems, a Nyquist plot of the frequency response 
properties produce a circle-like curve (an exact circle if 
the appropriate parameter is chosen for the type of damp-
ing model), and on the fact that multi-degree-of-freedom 
(MDOF) systems produce Nyquist plots of frequency 
response data which include sections of near-circular arcs 
corresponding to the regions near the natural frequencies 
[42]. As an example, the resonance highlighted in the mag-
nitude and phase plots (Fig. 21) corresponds to a natural 
frequency near 383 Hz. Due to the discrete frequency reso-
lution of the measured FRF, the peak magnitude does not 
necessarily coincide with the true resonance frequency. 
To improve accuracy, the complex-valued FRF data in the 
vicinity of this peak are plotted in the Nyquist plane (see 
Fig. 23), where lightly damped SDOF behaviour produces 
a near-circular arc. A least-squares circle fit is then applied, 
yielding an accurate estimate of the natural frequency 
(383.08 Hz). Together, Figs. 21 and 23 illustrate both the 
identification of the resonance from the FRF and the refined 
estimation enabled by the circle-fit method.

ζ  for the first three modes after excluding the regions near 
boundaries are shown in Fig. 18.

Figure 18 shows that cracks can be clearly identified by 
the peaks in ζ 2 and ζ 3. Although the magnitude of peaks 
may vary among different modes, and some crack-induced 
peaks may be suppressed when the crack lies near an anti-
node (as discussed in Sect. 3.3), the combined use of ζ 2 and 
ζ 3 ensures that there is at least one distinguishable peak at 
each crack location, preventing missed identifications.

It should be noted that the present index is developed for 
open cracks and a single roving mass; scenarios involving 
asymmetric damage or more complex mass distributions 
introduce additional dynamic interactions and are therefore 
identified as directions for future work.

Experimental Validation

This section outlines the experimental set-up for investigat-
ing the existence and measurability of the natural frequency 
shift when a roving mass with rotary inertia is shifted across 
a crack. Experimental results from the 20% cracked beam 
carrying a roving mass with the maximum rotary inertia set-
ting are presented here. Results from both the 20% and 40% 
cracked beams are used to verify the crack location index.

Experiment Layout

The experimental set-up is shown in Fig. 19. A heavy steel 
platform with two supports was designed to carry a beam. 
The beam made of mild steel was clamped to the support 
at both ends. A crack was introduced by machining a flat-
bottomed notch 2 mm wide on the beam. Two crack depths 
were used, corresponding to 20% and 40% thickness reduc-
tion of the beam, respectively.

The roving mass was made of steel and was clamped to 
the beam with fasteners. The roving mass is 1.15 times the 
mass of the beam, equal to one of the dimensionless mass 
values in Sect. 3.2. The rotary inertia of the roving mass can 
be adjusted by changing the radius of gyration (see Fig. 20). 
Impact hammer tests were performed whenever the mass 
was located in a new position to measure the frequency 
response of the set-up. The spacing for roving mass place-
ment was 4 mm. A total of 71 mass locations within a range 
of 280 mm were tested on each cracked beam. The coor-
dinate of the centre of the crack was 394 mm from the left 
end. For each cracked beam, three settings of rotary inertia 
as shown in Fig. 20 were tested, corresponding to the three 
magnitudes of rotary inertia tested in Sect. 3.2.
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Fig. 18  The curves of ζ 1, ζ 2, 
and ζ 3 for multi-crack cases 
(excluding regions near boundar-
ies, all cracks are 20%). (a) case 
1: cracks are located at 0.15 m, 
0.33 m, and 0.41 m, (b) case 
2: cracks are located at 0.21 m, 
0.27 m, and 0.37 m, (c) case 3: 
cracks are located at 0.11 m, 
0.25 m, and 0.43 m
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Fig. 20  Different settings of the 
rotary inertia (design figures 
and photos) [32]. (a) maximum 
setting, (b) medium setting, (c) 
minimum setting

 

Fig. 19  The experimental set-up. 
(a) rig and impact hammer tests, 
(b) the schematic diagram
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percentage error between experimental results and ANSYS 
results for the first eight natural frequencies is between 
2.47% and 8.17%. To confirm the measurability of the fre-
quency changes when the roving mass passed the 20% crack 
in the presence of measurement noise and small parameter 
variations, a measurability check has been presented in 
Appendix B. The natural frequency shift that occurs when 
the mass passes the crack at 394 mm is measurable, but it is 
not easily distinguishable from the overall natural frequency 
curve. In addition, irregular frequency variations elsewhere 
in the data may further obscure this effect and make visual 
interpretation more challenging. For example, some abnor-
mal frequency shifts appear in the curves of the 4th and 5th 
natural frequencies because these two modes are closely 
coupled with two modes in other directions (see Fig. 25), 
respectively, when the mass is located at certain locations 
(approximately 4 mass locations in the 4th natural frequency 
and 5 mass locations in the 5th natural frequency).

The comparison of the results of natural frequency shift 
∆ f  is made in Fig. 26. For the ∆ f  curve, the peak cor-
responding to the crack location is relatively small at lower 
frequencies. For example, it is impossible to find a notice-
able peak at the crack location for the 1 st natural frequency. 
For the 2nd natural frequency, the peak at the crack loca-
tion is observable, however, the magnitude of the peak is 
comparable to that of the peak caused by a measurement 
error. False peaks appear in the curves of ∆ f  of the 4th 

20% Cracked Beam Results

The natural frequency results for the 20% cracked beam 
carrying a roving mass with the maximum rotary inertia 
setting are shown in Fig. 24. The experimental results are 
also compared with those obtained using ANSYS simula-
tions and the analytical DSM model. The results from dif-
ferent methods are in good agreement. The average relative 

Fig. 22  A typical resonance peak (‘x’ indicates discrete data points)

 

Fig. 21  Measured accelerance FRF showing the magnitude (top) and phase (bottom) over the 0–800 Hz frequency range
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the results of the 8th natural frequency, where ∆ f  changes 
in sign near the extrema of the f  curve, leading to addi-
tional peaks in the ∆ (∆ f) curve, which agrees with the 
observation in Fig.  4. These additional peaks are compa-
rable in magnitude to the peak associated with the crack, 
thereby preventing clear identification of the crack location.

Implementation of the Crack Location Index

To suppress the additional peaks, the crack location index 
is applied to the 3rd natural frequency. Figure  29 shows 
the curves of f3, ∆ (∆ f3), and ζ 3 for three different 
settings of the rotary inertia. When the rotary inertia is set 
to the maximum and medium values, the crack location is 
indicated by the most significant change in the curve of 
ζ 3. When the rotary inertia is at the minimum setting, a 
noticeable variation in ζ 3 is still observed near the actual 
crack location. The average of the x-coordinate of the two 
prominent peaks is taken as the identified crack location, 
which is 0.394 m for both the maximum and medium rotary 
inertia settings, and 0.386 m for the minimum rotary iner-
tia setting. The maximum distance between the actual crack 
location (i.e. 0.394 m) and the identified crack location is 
8 mm. Overall, the crack location can be accurately identi-
fied using the proposed index. Furthermore, ζ 3 exhibits a 
smoother profile compared with ∆ (∆ f3), which is benefi-
cial for determining the crack location.

and 5th natural frequencies due to closely coupled modes. 
For the 6th to 8th natural frequencies, the curves exhibit 
intensified fluctuations, making the crack-induced peak less 
discernible.

Although the natural frequencies f  for the 2nd and 3rd 
modes show good agreement with the ANSYS and DSM 
predictions (Fig. 24), the corresponding ∆ f  curves exhibit 
noticeably stronger oscillations (Fig. 26(b, c)). This behav-
iour occurs because ∆ f  is obtained by differencing two 
natural frequency measurements at adjacent mass locations, 
effectively acting as a numerical derivative of the measured 
f -curve. Even small experimental variations (e.g. slight dif-
ferences in hammer excitation, bolt-tightening torque varia-
tions when repositioning the mass, or minor errors in mass 
placement) are amplified in the differenced quantity, despite 
being barely visible in the underlying frequency values.

To reduce the fluctuations, the curves of ∆ (∆ f) are 
shown in Fig. 27. For the ∆ (∆ f) curve, the overall profile 
is flatter and the peak at the crack location appears more 
pronounced. However, the presence of false peaks hinders 
reliable crack localization. These false peaks are generally 
due to measurement error or the small natural frequency 
shift around the extrema of the natural frequency curve. For 
the 1 st mode, the crack-induced frequency shift is relatively 
small and of the same order as the combined measurement 
uncertainty. Therefore, neither ∆ f  nor ∆ (∆ f) yields 
a reliable crack signature for the 1 st mode, as shown in 
Fig. 26(a) and Fig. 27(a). As an example, Fig. 28 presents 

Fig. 23  Nyquist plot of the 
complex-valued accelerance FRF 
in the vicinity of the resonance as 
highlighted in Fig. 21
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the cracked beam and standard modal data for intact beams 
available in the literature for common boundary conditions. 
To assess its robustness, numerical studies were performed 
using DSM-based models with variations in rotary inertia 
and mass, crack location (including near modal antinodes), 
and boundary conditions (simply supported, clamped, and 
cantilever). The applicability of ζ  for multi-crack identi-
fication was also investigated. The results demonstrate that 
when the 2nd and 3rd modes are used, cracks are consis-
tently identified from the peaks of ζ  curves with high accu-
racy. Experimental verification using single-cracked beams 
with 20% and 40% cracks further confirms the reliability 
of the index. Compared with the ∆ (∆ f) curves, the ζ  
curves exhibit reduced fluctuations and more clearly high-
light the damage location through a prominent peak.

The main findings of this study can be summarized as 
follows:

 

 1.	  The accuracy of the derived analytical expression for 
estimating the natural frequency of an Euler-Bernoulli 
beam carrying a mass with rotary inertia is verified 
across multiple types of boundary conditions. For the 
first ten natural frequencies, the error ranges from 0.05% 
to 3.24% for simply supported boundaries, 0.00% to 
6.92% for clamped-free boundaries, 0.03% to 6.92% 
for clamped-clamped boundaries, 0.01% to 6.87% for 
clamped-pinned boundaries, and 0.01% to 8.08% for 
sliding-pinned boundaries.

 2.	  The proposed crack location index ζ  is ‘baseline-free’ 
because it relies on measured natural frequencies of 
the damaged beam and does not require modal tests on 
its intact state. Instead, it utilizes the theoretical modal 
properties of an equivalent intact beam, which are read-
ily available in the literature [33].

 3.	  The proposed index suppresses false peaks in the curve 
of ∆ (∆ f) and the best performance can be observed 
for the 2nd and 3rd modes where all false peaks except 
those near boundaries can be suppressed, allowing 
crack-induced peaks to be highlighted.

To further verify the applicability of the crack location 
index, it is also applied to the experimental data from the 
40% cracked beam. The resulting curves are presented in 
Fig. 30. While the ∆ (∆ f3) plots already provide sufficient 
information to identify the crack location, the curves of ζ 3 
offer a smoother representation. This smoothness enhances 
the visibility of the abrupt change in ζ 3 as the mass passes 
over the crack, thereby facilitating clearer crack localiza-
tion. The crack is consistently identified at 0.394 m, which 
matches the actual crack location accurately.

Overall, when the crack is relatively severe, the crack 
location can be identified from the pronounced peak in the 
curve of ∆ f  or ∆ (∆ f) versus mass location. However, 
in the presence of a small crack, the occurrence of false 
peaks in the curve of ∆ (∆ f) may impede the determina-
tion of crack location. Under such conditions, the proposed 
crack location index ζ  offers improved performance as it 
effectively attenuates some of the false peaks and enhances 
the identifiability of the crack location.

Concluding Remarks

In this study, an analytical formulation was developed to 
estimate the natural frequencies of an Euler-Bernoulli beam 
subjected to a roving mass with rotary inertia. The derived 
expression was validated against results obtained from the 
Dynamic Stiffness Method (DSM). Leveraging this formu-
lation, a crack location index ζ  (i.e. Equation  (26)) was 
proposed and analytically justified. A key advantage of the 
proposed index is its ability to suppress false peaks in the 
curve of ∆ (∆ f) (i.e. the change of natural frequency shift 
when a stationary mass traverses the beam, as defined in 
Eq. (25)) for the lower modes, thereby highlighting the true 
peak corresponding to the crack location. In addition, ζ  can 
be calculated using only the measured natural frequencies of 

Fig. 24  The comparison of natural frequency results (20% crack at 
394 mm). (a) 1 st natural frequency, (b) 2nd natural frequency, (c) 3rd 
natural frequency, (d) 4th natural frequency, (e) 5th natural frequency, 
(f) 6th natural frequency, (g) 7th natural frequency, (h) 8th natural 
frequency

Fig. 25  Two other modes affect-
ing 4th and 5th natural frequen-
cies. (a) torsional mode shape, 
(b) bending mode shape (strong 
direction)
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of a crack. Since damage often occurs near supports 
in real-world structures, addressing this limitation is a 
critical next step. One promising approach is to lever-
age advanced signal processing such as in [14] where 
the wavelet feature extraction-based damage detection 
index demonstrates satisfactory accuracy when detect-
ing damage in the end regions of concrete-filled steel 
tubes.

 2.	  Numerical results indicate that the proposed index for 
the 1 st mode can also support crack identification. The 
measurability check in Appendix B also confirms that 
the crack-induced frequency shift is measurable for the 
1 st mode. In the experiment, however, the frequency 
shift in the 1 st mode was largely obscured by measure-
ment noise when plotted together with results from 
other mass locations. Integrating the index with sig-
nal processing approaches, for example wavelet-based 
methods [43], may help improve detection capability 
when noise is present.

 3.	  Future work could investigate how to generalize the 
proposed index to beams with more complex boundary 
conditions, where the modal characteristics of the cor-
responding intact beam may not be directly accessible. 
One possibility is to examine whether the intact beam’s 
modal properties could be inferred in an inverse manner 
using Eq. (20).

 4.	  The proposed index has been shown to identify multiple 
cracks, but situations involving closely spaced cracks 
or distributed damage warrant further investigation. In 
such cases, the distinct crack-induced peaks revealed by 
the index may merge and become less distinguishable. 
Advanced signal processing such as wavelet transform 
may help isolate and sharpen these local perturbations.

 5.	  A useful extension would be to benchmark the pro-
posed index against existing damage indicators, such 
as those based on modal curvature [44] or modal strain 
energy [45]. 

 

 4.	  Since the proposed index performs well with lower 
modes, using a larger roving rotary inertia is beneficial, 
whereas variations in the roving mass have a relatively 
weaker influence on the peak at the crack location.

 5.	  The proposed index can be applied to different bound-
ary conditions.

 6.	  The proposed index can be used for detecting multiple 
cracks without missing identifications when the 2nd and 
3rd modes are used jointly.

 7.	  Using the proposed index, crack locations were iden-
tified accurately across all numerical studies. In the 
experimental validation, the crack location was pin-
pointed for the 40% cracked beam under all three rotary 
inertia settings; for the 20% cracked beam, the largest 
deviation between the true and identified crack loca-
tions was 8 mm, which is small compared with the 
length of the segment (i.e. 280 mm) being tested. 

 
Based on these findings, some recommendations for 

future research are given as follows:
 

 1.	  A limitation of the proposed index in its current form 
is its reduced reliability in regions near the beam’s sup-
ports. This is because, for the boundary conditions con-
sidered, when the roving mass approaches boundaries, 
some of the displacement, slope, and curvature of all 
the bending modes approach zero, so the effect of the 
roving mass diminishes rapidly. This can change natural 
frequencies rapidly near supports, leading to false peaks 
in ∆ (∆ f) and ζ  that obscure or mimic the signature 

Fig. 26  The comparison of natural frequency shift ( ∆ f ) results (20% 
crack at 394 mm). (a) 1 st natural frequency, (b) 2nd natural frequency, 
(c) 3rd natural frequency, (d) 4th natural frequency, (e) 5th natural 
frequency, (f) 6th natural frequency, (g) 7th natural frequency, (h) 8th 
natural frequency
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Fig. 27  The comparison of the change of natural frequency shift 
( ∆ (∆ f)) results (20% crack at 394 mm). (a) 1 st natural frequency, 
(b) 2nd natural frequency, (c) 3rd natural frequency, (d) 4th natural 
frequency, (e) 5th natural frequency, (f) 6th natural frequency, (g) 7th 
natural frequency, (h) 8th natural frequency

Fig. 28  The comparison of f , ∆ f , and ∆ (∆ f) for the 8th natural frequency (20% crack at 394 mm. The red dotted lines indicate the mass 
locations corresponding to the extrema of the curve of natural frequency)
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Fig. 29  The natural frequency 
data and ζ  of the 3rd mode of 
the 20% cracked beam carrying 
a roving mass with rotary inertia 
(crack location: 0.394 m). (a) 
maximum rotary inertia setting, 
(b) medium rotary inertia setting, 
(c) minimum rotary inertia setting
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Fig. 30  The natural frequency 
data and ζ  of the 3rd mode of 
the 40% cracked beam carrying 
a roving mass with rotary inertia 
(crack location: 0.394 m). (a) 
maximum rotary inertia setting, 
(b) medium rotary inertia setting, 
(c) minimum rotary inertia setting
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boundary conditions. The results are compared with the 
DSM results and presented below.

Appendix A. Verification of the Natural 
Frequency Estimation Equation across 
Multiple Boundary Conditions

To further validate the accuracy of Eq.  (20), natural fre-
quencies are calculated for the beam in Fig. 3 with different 

Table 3  Natural frequencies obtained through the DSM and Eq. (20) forclamped-free boundary conditions

Table 4  Natural frequencies obtained through the DSM and Eq. (20) forclamped-clamped boundary conditions
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Table 5  Natural frequencies obtained through the DSM and Eq. (20) forclamped-pinned boundary conditions

Table 6  Natural frequencies obtained through the DSM and Eq. (20) for sliding-pinned boundary conditions
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test. Throughout this procedure, variations in bolt-tightening 
torque and small inaccuracies in mass positioning could intro-
duce additional variability into the measured natural frequen-
cies. Therefore, it is necessary to examine the repeatability of 
the measured natural frequencies by repeatedly loosening and 
retightening the bolts. With an acceptable repeatability check, 
the variance caused by bolt-tightening torque and small error 
in mass positioning can be considered negligible, allowing 
the observed frequency shifts to be attributed solely to the 
presence of the crack and the roving mass.

Fig. 31 shows the magnitude plot of FRF of five repeat-
ability tests conducted on an intact beam carrying the roving 
mass with the maximum rotary inertia setting. The rov-
ing mass was positioned 0.36m from the beam’s left end. 
Between successive tests, the mass was removed and then 
reattached at the same location. The five curves show virtu-
ally minor difference from one another, indicating that the 
test setup achieved high repeatability.

Table 8 presents the first eight natural frequencies obtained 
from the repeatability tests, along with the corresponding stan-
dard deviations. The variations across tests are very small, fur-
ther confirming the high repeatability of the measurements.

The values of can be estimated using the standard devia-
tion between the repeatability tests in Table 8. When the mass 
passed the 20% crack, the measured using different rotary 
inertia settings is compared with in Table 9, and the compari-
son between and is made in Table 10. From the comparison, 
and are generally larger than and, respectively. Thus the mea-
surability of frequency changes when the roving mass passed 
the 20% crack in the experiment can be confirmed.

Appendix B. Measurability Check of the 20% 
Cracked Beam

Suppose κ  is the magnitude of error in experimental fre-
quency results (caused by uncertainties in measurement, 
inaccuracies in mass placement, human factors, etc.) and 
ftrue is the true value of natural frequency, the experimen-
tal frequency results can be expressed as

f = ftrue ± κ � (B1)

According to Eqs. (24)-(25), natural frequency shift can 
be written as
�

f =
�

ftrue ± 2κ� (B2)

and the change of natural frequency shift can be written 
as

� (�
f

)
=

� (�
ftrue

)
± 4κ� (B3)

The measurability of ∆ f  and ∆ (∆ f) when the mass 
passes the crack can be confirmed if |∆ f | > 2κ  and 
|∆ (∆ f)| > 4κ .

To estimate the values of κ , repeatability checks are 
required. In the experiment, the bolts securing the roving 
mass were manually tightened to approximate a rigid connec-
tion between the mass and the beam. After each impact ham-
mer test, the bolts were loosened so the mass could be moved 
to the next location, then retightened before the subsequent 

Table 7  Natural frequencies obtained through the DSM and Eq. (20) for sliding-pinned boundary conditions
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Fig. 31  The accelerance FRF 
magnitude of five repeatability 
tests

 

Table 8  The natural frequency results of five repeatability tests
Mode number Natural frequency results (Hz) Standard deviation

Test 1 Test 2 Test 3 Test 4 Test 5
1 14.3954 14.3963 14.3924 14.3918 14.3902 0.0026
2 32.8590 32.8759 32.8832 32.8575 32.8295 0.0208
3 80.4844 80.4221 80.3685 80.3327 80.2926 0.0753
4 144.4534 144.0717 144.0472 143.5125 143.4537 0.4203
5 217.0632 216.9812 216.8912 216.8645 216.8626 0.0876
6 377.9789 378.2351 378.1126 378.0502 377.8934 0.1301
7 436.8046 436.7572 436.7101 436.5743 436.6282 0.0937
8 638.1071 638.0135 638.0793 638.0734 637.9210 0.0742

Table 9  The comparison between ∆ f  and 2κ  (unit: Hz)
Mode number 2κ

∆ f  with different rotary inertia 
settings
Maximum Medium Minimum

1 0.0051 0.0622 0.1011 0.1096
2 0.0415 0.4220 0.4529 −0.2303
3 0.1506 −2.2019 −2.1366 −0.9875
4 0.8405 −0.1157 −1.2055 −5.3741
5 0.1751 3.0519 5.0702 10.3636
6 0.2602 −8.2519 −9.6268 −10.6534
7 0.1875 11.2656 15.5167 20.6261
8 0.1484 −4.4400 −8.0386 −11.8222

Table 10  The comparison between ∆ (∆ f) and 4κ  (unit: Hz)
Mode number 4κ

∆ (∆ f) with different rotary inertia 
settings
Maximum Medium Minimum

1 0.0102 −0.0231 0.0202 0.0147
2 0.0830 0.1910 0.4617 0.2268
3 0.3012 −1.2334 −1.0042 −0.3507
4 1.6810 −1.7065 −2.1394 −4.4697
5 0.3503 2.8014 4.7191 8.7810
6 0.5203 −2.1050 −3.3794 −4.6859
7 0.3749 1.8027 5.6699 9.9282
8 0.2968 1.2157 0.4961 −2.6686
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